On the axiomatic system of *SBL*_¬-algebras

Filip Švrček

Department of Algebra and Geometry Faculty of Sciences Palacký University of Olomouc Czech Republic svrcekf@inf.upol.cz

SSAOS 2008, Třešť

Outline

- Motivation
- 2 Results
- References

By an SBL--algebra we mean an algebra

$$A = (A; \vee, \wedge, \odot, \rightarrow, \neg, 0, 1)$$
 of the type $(2, 2, 2, 2, 1, 0, 0)$, where

(BL1)
$$x \odot y = y \odot x$$
,

$$(BL2) \quad 1 \odot x = x ,$$

$$(\mathsf{BL3}) \quad x \odot (x \to y) = y \odot (y \to x) \;,$$

(BL4)
$$(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$$
,

$$(BL5) \quad 0 \to x = 1 \; ,$$

$$(\mathsf{BL6}) \quad ((\mathsf{X} \to \mathsf{Y}) \to \mathsf{Z}) \to (((\mathsf{Y} \to \mathsf{X}) \to \mathsf{Z}) \to \mathsf{Z}) = \mathsf{1} \;,$$

(SBL)
$$(x \odot y) \rightarrow 0 = (x \rightarrow 0) \lor (y \rightarrow 0)$$
,

$$X \lor y \stackrel{\text{def}}{=} ((X \to y) \to y) \land ((y \to x) \to x),$$
 (J)

$$X \wedge y \stackrel{def}{=} X \odot (X \to y).$$
 (M)

By an SBL--algebra we mean an algebra

$$A = (A; \vee, \wedge, \odot, \rightarrow, \neg, 0, 1)$$
 of the type $\langle 2, 2, 2, 2, 1, 0, 0 \rangle$, where

(BL1)
$$x \odot y = y \odot x$$
,

(BL2)
$$1 \odot x = x$$
,

$$(\mathsf{BL3}) \quad x \odot (x \to y) = y \odot (y \to x) \;,$$

(BL4)
$$(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$$
,

(BL5)
$$0 \rightarrow x = 1$$
,

(BL6)
$$((x \rightarrow y) \rightarrow z) \rightarrow (((y \rightarrow x) \rightarrow z) \rightarrow z) = 1$$
,

$$(\mathsf{SBL}) \quad (x \odot y) \to \mathsf{0} = (x \to \mathsf{0}) \lor (y \to \mathsf{0}) \;,$$

$$x \lor y \stackrel{\text{def}}{=} ((x \to y) \to y) \land ((y \to x) \to x),$$
 (J)

$$X \wedge y \stackrel{\text{def}}{=} X \odot (X \rightarrow y).$$

By an SBL--algebra we mean an algebra

$$A = (A; \vee, \wedge, \odot, \rightarrow, \neg, 0, 1)$$
 of the type $\langle 2, 2, 2, 2, 1, 0, 0 \rangle$, where

(BL1)
$$x \odot y = y \odot x$$
,

(BL2)
$$1 \odot x = x$$
,

$$(\mathsf{BL3}) \quad x \odot (x \to y) = y \odot (y \to x) \;,$$

(BL4)
$$(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$$
,

(BL5)
$$0 \rightarrow x = 1$$
,

(BL6)
$$((x \rightarrow y) \rightarrow z) \rightarrow (((y \rightarrow x) \rightarrow z) \rightarrow z) = 1$$
,

$$(\mathsf{SBL}) \quad (x \odot y) \to \mathsf{0} = (x \to \mathsf{0}) \lor (y \to \mathsf{0}) \;,$$

$$x \lor y \stackrel{\text{def}}{=} ((x \to y) \to y) \land ((y \to x) \to x),$$
 (J)

$$X \wedge y \stackrel{\text{def}}{=} X \odot (X \rightarrow y).$$

By an SBL--algebra we mean an algebra

$$A = (A; \vee, \wedge, \odot, \rightarrow, \neg, 0, 1)$$
 of the type $\langle 2, 2, 2, 2, 1, 0, 0 \rangle$, where

(BL1)
$$x \odot y = y \odot x$$
,

(BL2)
$$1 \odot x = x$$
,

$$(\mathsf{BL3}) \quad \mathsf{x} \odot (\mathsf{x} \to \mathsf{y}) = \mathsf{y} \odot (\mathsf{y} \to \mathsf{x}) \; ,$$

(BL4)
$$(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$$
,

(BL5)
$$0 \rightarrow x = 1$$
,

(BL6)
$$((x \rightarrow y) \rightarrow z) \rightarrow (((y \rightarrow x) \rightarrow z) \rightarrow z) = 1$$
,

(SBL)
$$(x \odot y) \rightarrow 0 = (x \rightarrow 0) \lor (y \rightarrow 0)$$
,

$$x \lor y \stackrel{\textit{def}}{=} ((x \to y) \to y) \land ((y \to x) \to x),$$
 (J)

$$X \wedge y \stackrel{\text{def}}{=} X \odot (X \rightarrow y).$$

By an SBL--algebra we mean an algebra

$$A = (A; \vee, \wedge, \odot, \rightarrow, \neg, 0, 1)$$
 of the type $\langle 2, 2, 2, 2, 1, 0, 0 \rangle$, where

(BL1)
$$x \odot y = y \odot x$$
,

(BL2)
$$1 \odot x = x$$
,

(BL3)
$$x \odot (x \rightarrow y) = y \odot (y \rightarrow x)$$
,

(BL4)
$$(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$$
,

(BL5)
$$0 \rightarrow x = 1$$
,

(BL6)
$$((x \rightarrow y) \rightarrow z) \rightarrow (((y \rightarrow x) \rightarrow z) \rightarrow z) = 1$$
,

(SBL)
$$(x \odot y) \rightarrow 0 = (x \rightarrow 0) \lor (y \rightarrow 0)$$
,

$$x \vee y \stackrel{\text{def}}{=} ((x \to y) \to y) \wedge ((y \to x) \to x),$$
 (J)

$$x \wedge y \stackrel{\text{def}}{=} x \odot (x \to y).$$
 (M)

¬ is a unary operation on A satisfying:

$$(SBL_{\neg}1) \quad \neg \neg x = x ,$$

$$(SBL_{\neg}2) \quad \sim x \leq \neg x ,$$

$$(SBL_{\neg}3) \quad \nu(x \to y) = \nu(\neg y \to \neg x) ,$$

$$(SBL_{\neg}4) \quad \nu(x) \lor \sim \nu(x) = 1 ,$$

$$(SBL_{\neg}5) \quad \nu(x \lor y) \leq \nu(x) \lor \nu(y) ,$$

$$(SBL_{\neg}6) \quad \nu(x) \odot \nu(x \to y) \leq \nu(y) ,$$

$$\sim x \stackrel{def}{=} x \to 0 ,$$

¬ is a unary operation on A satisfying:

$$(SBL_{\neg}1) \quad \neg \neg x = x ,$$

$$(SBL_{\neg}2) \quad \sim x \leq \neg x ,$$

$$(SBL_{\neg}3) \quad \nu(x \to y) = \nu(\neg y \to \neg x) ,$$

$$(SBL_{\neg}4) \quad \nu(x) \lor \sim \nu(x) = 1 ,$$

$$(SBL_{\neg}5) \quad \nu(x \lor y) \leq \nu(x) \lor \nu(y) ,$$

$$(SBL_{\neg}6) \quad \nu(x) \odot \nu(x \to y) \leq \nu(y) ,$$

$$\sim x \stackrel{def}{=} x \to 0 ,$$

Definition (SBL_¬-algebra, 2nd part)

¬ is a unary operation on A satisfying:

$$\begin{aligned} (\mathsf{SBL}_{\neg} 1) & \neg \neg x = x \;, \\ (\mathsf{SBL}_{\neg} 2) & \sim x \leq \neg x \;, \\ (\mathsf{SBL}_{\neg} 3) & \nu(x \to y) = \nu(\neg y \to \neg x) \;, \\ (\mathsf{SBL}_{\neg} 4) & \nu(x) \lor \sim \nu(x) = 1 \;, \\ (\mathsf{SBL}_{\neg} 5) & \nu(x \lor y) \leq \nu(x) \lor \nu(y) \;, \\ (\mathsf{SBL}_{\neg} 6) & \nu(x) \odot \nu(x \to y) \leq \nu(y) \;, \\ & \sim x \stackrel{def}{=} x \to 0 \;, \\ & \nu(x) \stackrel{def}{=} \sim \neg x \;. \end{aligned}$$

Connectives: & (conj.), \rightarrow (impl.), \neg (strong neg.) Truth constants: $\overline{0}$ Further connectives:

- $\varphi \wedge \psi$ is $\varphi \& (\varphi \rightarrow \psi)$;
- $\varphi \lor \psi$ is $((\varphi \to \psi) \to \psi) \land ((\psi \to \varphi) \to \varphi)$;
- $\varphi \equiv \psi$ is $(\varphi \rightarrow \psi) \& (\psi \rightarrow \varphi)$;
- $\sim \varphi$ is $\varphi \to \overline{0}$;
- $\Delta \varphi$ is $\sim \neg \varphi$.

Connectives: & (conj.), \rightarrow (impl.), \neg (strong neg.)

Truth constants: 0

Further connectives

- $\varphi \wedge \psi$ is $\varphi \& (\varphi \rightarrow \psi)$;
- $\varphi \lor \psi$ is $((\varphi \to \psi) \to \psi) \land ((\psi \to \varphi) \to \varphi)$;
- $\varphi \equiv \psi$ is $(\varphi \rightarrow \psi) \& (\psi \rightarrow \varphi)$;
- $\sim \varphi$ is $\varphi \to \overline{0}$;
- $\Delta \varphi$ is $\sim \neg \varphi$.

Connectives: & (conj.), \rightarrow (impl.), \neg (strong neg.) Truth constants: $\overline{0}$

Further connectives:

- $\varphi \wedge \psi$ is $\varphi \& (\varphi \rightarrow \psi)$;
- $\varphi \lor \psi$ is $((\varphi \to \psi) \to \psi) \land ((\psi \to \varphi) \to \varphi)$;
- $\varphi \equiv \psi$ is $(\varphi \rightarrow \psi) \& (\psi \rightarrow \varphi)$;
- $\sim \varphi$ is $\varphi \to \overline{0}$;
- $\Delta \varphi$ is $\sim \neg \varphi$.

Connectives: & (conj.), \rightarrow (impl.), \neg (strong neg.) Truth constants: $\overline{0}$

Further connectives:

- $\varphi \wedge \psi$ is $\varphi \& (\varphi \rightarrow \psi)$;
- $\varphi \lor \psi$ is $((\varphi \to \psi) \to \psi) \land ((\psi \to \varphi) \to \varphi)$;
- $\varphi \equiv \psi$ is $(\varphi \rightarrow \psi) \& (\psi \rightarrow \varphi)$;
- $\sim \varphi$ is $\varphi \to \overline{\mathbf{0}}$;
- $\Delta \varphi$ is $\sim \neg \varphi$.

Connectives: & (conj.), \rightarrow (impl.), \neg (strong neg.) Truth constants: $\overline{0}$

Further connectives:

- $\varphi \wedge \psi$ is $\varphi \& (\varphi \rightarrow \psi)$;
- $\varphi \lor \psi$ is $((\varphi \to \psi) \to \psi) \land ((\psi \to \varphi) \to \varphi)$;
- $\varphi \equiv \psi$ is $(\varphi \rightarrow \psi) \& (\psi \rightarrow \varphi)$;
- $\sim \varphi$ is $\varphi \to \overline{\mathbf{0}}$;
- $\Delta \varphi$ is $\sim \neg \varphi$.

Axioms:

(B1)
$$(\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$
,

(B2)
$$(\varphi \& \psi) \rightarrow \varphi$$
,

(B3)
$$(\varphi \& \psi) \rightarrow (\psi \& \varphi)$$
,

(B4)
$$(\varphi \& (\varphi \to \psi)) \to (\psi \& (\psi \to \varphi))$$
,

(B5)
$$(\varphi \rightarrow (\psi \rightarrow \chi)) \equiv ((\varphi \& \psi) \rightarrow \chi)$$
,

(B6)
$$((\varphi \rightarrow \psi) \rightarrow \chi) \rightarrow (((\psi \rightarrow \varphi) \rightarrow \chi) \rightarrow \chi)$$
,

(B7)
$$\overline{0} \rightarrow \varphi$$
,

(STR)
$$(\varphi \& \psi \to \overline{0}) \to (\varphi \to \overline{0}) \lor (\psi \to \overline{0})$$
,

$$(1_{\neg}) \quad \sim \sim \varphi \equiv \varphi \; ,$$

$$(2\neg) \quad \sim \varphi \rightarrow \neg \varphi \; ,$$

$$(3\neg)$$
 $\Delta(\varphi \rightarrow \psi) \rightarrow \Delta(\neg \psi \rightarrow \neg \varphi)$,

$$(4_{\neg}) \quad \Delta\varphi \lor \sim \Delta\varphi \ ,$$

$$(5_{\neg})$$
 $\Delta(\varphi \lor \psi) \to (\Delta \varphi \lor \Delta \psi)$,

(6_¬)
$$\Delta(\varphi \rightarrow \psi) \rightarrow (\Delta\varphi \rightarrow \Delta\psi)$$
.

Theorem (Ciucci's result)

Let $A = (A; \lor, \land, \odot, \rightarrow, \neg, 0, 1)$ be a structure such that

- lacktriangle (A; \lor , \land , \odot , \rightarrow , 0, 1) is an SBL-algebra,

(SBL
$$_{\neg}$$
1) $\neg \neg x = x$,
(SBL $_{\neg}$ 3) $\nu(x \to y) = \nu(\neg y \to \neg x)$,
(SBL $_{\neg}$ 6) $\nu(x) \odot \nu(x \to y) \le \nu(y)$

where

$$\sim x \stackrel{\text{def}}{=} x \to 0$$
,
 $\nu(x) \stackrel{\text{def}}{=} \sim \neg(x)$.

Then, A is an SBL_¬-algebra and vice versa.

Problem: Are the axioms from the foregoing theorem characterizing *SBL*_¬-algebras mutually independent or not?

Showed: The axioms characterizing *SBL*-algebras, i.e. identities (BL1) – (BL6) and (SBL), are mutually independent.

Problem: Are the axioms from the foregoing theorem characterizing *SBL*_¬-algebras mutually independent or not?

Showed: The axioms characterizing *SBL*-algebras, i.e. identities (BL1) – (BL6) and (SBL), are mutually independent.

Outline

- Motivation
- 2 Results
- 3 References

Let $A = (A; \lor, \land, \odot, \rightarrow, \neg, 0, 1)$ be an SBL-algebra satisfying moreover identities (SBL $_{\neg}$ 1) and (SBL $_{\neg}$ 3). Then the following hold in A:

(1)
$$X \rightarrow \sim (\sim y \rightarrow \neg(x \rightarrow y)) = \sim X$$
.

Substitution in (1)

If we put $x := \neg y, y := \neg x$ in (1), we get the identity

(2)
$$\neg y \rightarrow \sim (\nu(x) \rightarrow \neg(\neg y \rightarrow \neg x)) = \nu(y)$$

valid in every SBL-algebra satisfying also ($SBL_{\neg}1$) and ($SBL_{\neg}3$).

Let $A = (A; \lor, \land, \odot, \rightarrow, \neg, 0, 1)$ be an SBL-algebra satisfying moreover identities (SBL $_{\neg}$ 1) and (SBL $_{\neg}$ 3). Then the following hold in A:

(1)
$$X \rightarrow \sim (\sim y \rightarrow \neg(x \rightarrow y)) = \sim X$$
.

Substitution in (1)

If we put $x := \neg y, y := \neg x$ in (1), we get the identity

(2)
$$\neg y \rightarrow \sim (\nu(x) \rightarrow \neg(\neg y \rightarrow \neg x)) = \nu(y)$$
,

valid in every SBL-algebra satisfying also ($SBL_{\neg}1$) and ($SBL_{\neg}3$).

Let $A = (A; \lor, \land, \odot, \rightarrow, \neg, 0, 1)$ be a structure such that

- lacktriangledown (A; \lor , \land , \odot , \rightarrow , 0, 1) is an SBL-algebra,

(SBL_¬1)
$$\neg \neg x = x$$
,
(SBL_¬3) $\nu(x \to y) = \nu(\neg y \to \neg x)$,

where

$$\sim x \stackrel{\text{def}}{=} x \to 0$$
,
 $\nu(x) \stackrel{\text{def}}{=} \sim \neg x$.

Then, A is an SBL -- algebra and vice versa.

Does (SBL₃6) follow from 1 and 2?

•
$$(SBL_{\neg}6)$$
 $\nu(x) \odot \nu(x \rightarrow y) \leq \nu(y)$

is equivalent to

$$\bullet \ (\nu(X) \odot \nu(X \to Y)) \lor \nu(Y) = \nu(Y).$$

•
$$(\neg y \rightarrow ((\nu(x) \rightarrow (\nu(x \rightarrow y) \rightarrow 0)) \rightarrow (((\nu(y) \rightarrow (\nu(x) \odot \nu(x \rightarrow y))) \rightarrow (\nu(x) \odot \nu(x \rightarrow y))) \rightarrow 0))) \odot ((\nu(y) \rightarrow (\nu(x) \odot \nu(\neg y \rightarrow \neg x))) \rightarrow (\nu(x) \odot \nu(\neg y \rightarrow \neg x))) = \nu(y)$$

Does (SBL₋6) follow from 1 and 2?

• $(SBL_{\neg}6)$ $\nu(x) \odot \nu(x \rightarrow y) \leq \nu(y)$

is equivalent to

•
$$(\nu(x) \odot \nu(x \rightarrow y)) \lor \nu(y) = \nu(y)$$
.

•
$$(\neg y \rightarrow ((\nu(x) \rightarrow (\nu(x \rightarrow y) \rightarrow 0)) \rightarrow (((\nu(y) \rightarrow (\nu(x) \odot \nu(x \rightarrow y))) \rightarrow (\nu(x) \odot \nu(x \rightarrow y))) \rightarrow 0))) \odot ((\nu(y) \rightarrow (\nu(x) \odot \nu(\neg y \rightarrow \neg x))) \rightarrow (\nu(x) \odot \nu(\neg y \rightarrow \neg x))) = \nu(y)$$

Does ($SBL_{\neg}6$) follow from 1 and 2?

•
$$(SBL_{\neg}6)$$
 $\nu(x) \odot \nu(x \rightarrow y) \leq \nu(y)$

is equivalent to

•
$$(\neg y \rightarrow ((\nu(x) \rightarrow (\nu(x \rightarrow y) \rightarrow 0)) \rightarrow (((\nu(y) \rightarrow (\nu(x) \odot \nu(x \rightarrow y))) \rightarrow (\nu(x) \odot \nu(x \rightarrow y))) \rightarrow 0))) \odot ((\nu(y) \rightarrow (\nu(x) \odot \nu(\neg y \rightarrow \neg x))) \rightarrow (\nu(x) \odot \nu(\neg y \rightarrow \neg x))) = \nu(y)$$

Does (SBL₋6) follow from 1 and 2?

•
$$(SBL_{\neg}6)$$
 $\nu(x) \odot \nu(x \rightarrow y) \leq \nu(y)$

is equivalent to

•
$$(\nu(x) \odot \nu(x \rightarrow y)) \lor \nu(y) = \nu(y)$$
.

•
$$(\neg y \rightarrow ((\nu(x) \rightarrow (\nu(x \rightarrow y) \rightarrow 0)) \rightarrow (((\nu(y) \rightarrow (\nu(x) \odot \nu(x \rightarrow y))) \rightarrow (\nu(x) \odot \nu(x \rightarrow y))) \rightarrow 0))) \odot ((\nu(y) \rightarrow (\nu(x) \odot \nu(\neg y \rightarrow \neg x))) \rightarrow (\nu(x) \odot \nu(\neg y \rightarrow \neg x))) = \nu(y)$$

Does ($SBL_{\neg}6$) follow from 1 and 2?

•
$$(SBL_{\neg}6)$$
 $\nu(x) \odot \nu(x \rightarrow y) \leq \nu(y)$

is equivalent to

•
$$(\nu(x) \odot \nu(x \rightarrow y)) \lor \nu(y) = \nu(y)$$
.

:

•
$$(\neg y \rightarrow ((\nu(x) \rightarrow (\nu(x \rightarrow y) \rightarrow 0)) \rightarrow (((\nu(y) \rightarrow (\nu(x) \odot \nu(x \rightarrow y))) \rightarrow (\nu(x) \odot \nu(x \rightarrow y))) \rightarrow 0))) \odot ((\nu(y) \rightarrow (\nu(x) \odot \nu(\neg y \rightarrow \neg x))) \rightarrow (\nu(x) \odot \nu(\neg y \rightarrow \neg x))) = \nu(y)$$

Does ($SBL_{\neg}6$) follow from 1 and 2?

•
$$(SBL_{\neg}6)$$
 $\nu(x) \odot \nu(x \rightarrow y) \leq \nu(y)$

is equivalent to

$$\bullet \ (\nu(x) \odot \nu(x \to y)) \lor \nu(y) = \nu(y).$$

:

$$\bullet (\neg y \to ((\nu(x) \to (\nu(x \to y) \to 0)) \to (((\nu(y) \to (\nu(x) \odot \nu(x \to y))) \to (\nu(x) \odot \nu(x \to y))) \to 0))) \odot ((\nu(y) \to (\nu(x) \odot \nu(\neg y \to \neg x))) \to (\nu(x) \odot \nu(\neg y \to \neg x))) = \nu(y)$$

- $\bullet \ \ \textit{M}(\textit{x},\textit{y}) := \neg \textit{y} \rightarrow ((\nu(\textit{x}) \rightarrow (\nu(\textit{x} \rightarrow \textit{y}) \rightarrow \textit{0})) \rightarrow (((\nu(\textit{y}) \rightarrow (\nu(\textit{x}) \odot \nu(\textit{x} \rightarrow \textit{y}))) \rightarrow (\nu(\textit{x}) \odot \nu(\textit{x} \rightarrow \textit{y}))) \rightarrow \textit{0})),$
- $N(x,y) := (\nu(y) \to (\nu(x) \odot \nu(\neg y \to \neg x))) \to (\nu(x) \odot \nu(\neg y \to \neg x))$

we can write (SBL_6) as

•
$$M(x, y) \odot N(x, y) = \nu(y)$$
.

- M(x, y) = 1,
- $N(x, y) = \neg y \rightarrow \sim (\nu(x) \rightarrow \neg(\neg y \rightarrow \neg x)).$

$$\bullet \neg y \to \sim (\nu(x) \to \neg(\neg y \to \neg x)) = \nu(y).$$

- $M(x,y) := \neg y \to ((\nu(x) \to (\nu(x \to y) \to 0)) \to (((\nu(y) \to (\nu(x) \odot \nu(x \to y))) \to (\nu(x) \odot \nu(x \to y))) \to 0)),$
- $N(x,y) := (\nu(y) \to (\nu(x) \odot \nu(\neg y \to \neg x))) \to (\nu(x) \odot \nu(\neg y \to \neg x))$

we can write (SBL_6) as

$$M(x,y) \odot N(x,y) = \nu(y).$$

÷

- M(x, y) = 1,
- $N(x,y) = \neg y \to \sim (\nu(x) \to \neg(\neg y \to \neg x)).$

$$\bullet \neg y \to \sim (\nu(x) \to \neg(\neg y \to \neg x)) = \nu(y).$$

- $M(x,y) := \neg y \to ((\nu(x) \to (\nu(x \to y) \to 0)) \to (((\nu(y) \to (\nu(x) \odot \nu(x \to y))) \to (\nu(x) \odot \nu(x \to y))) \to 0)),$
- $N(x,y) := (\nu(y) \to (\nu(x) \odot \nu(\neg y \to \neg x))) \to (\nu(x) \odot \nu(\neg y \to \neg x))$

we can write (SBL_6) as

 $M(x,y) \odot N(x,y) = \nu(y).$

:

- M(x, y) = 1,
- $N(x,y) = \neg y \to \sim (\nu(x) \to \neg(\neg y \to \neg x)).$

$$M(x,y) := \neg y \to ((\nu(x) \to (\nu(x \to y) \to 0)) \to (((\nu(y) \to (\nu(x) \odot \nu(x \to y))) \to (\nu(x) \odot \nu(x \to y))) \to 0)),$$

$$N(x,y) := (\nu(y) \to (\nu(x) \odot \nu(\neg y \to \neg x))) \to (\nu(x) \odot \nu(\neg y \to \neg x))$$

we can write (SBL_6) as

$$M(x,y) \odot N(x,y) = \nu(y).$$

:

•
$$M(x, y) = 1$$
,

$$\bullet \ \ N(x,y) = \neg y \to \sim (\nu(x) \to \neg(\neg y \to \neg x)).$$

$$\bullet \neg y \to \sim (\nu(x) \to \neg(\neg y \to \neg x)) = \nu(y).$$

- $\bullet \ \ \textit{M}(\textit{x},\textit{y}) := \neg \textit{y} \rightarrow ((\nu(\textit{x}) \rightarrow (\nu(\textit{x} \rightarrow \textit{y}) \rightarrow \textit{0})) \rightarrow (((\nu(\textit{y}) \rightarrow (\nu(\textit{x}) \odot \nu(\textit{x} \rightarrow \textit{y}))) \rightarrow (\nu(\textit{x}) \odot \nu(\textit{x} \rightarrow \textit{y}))) \rightarrow \textit{0})),$
- $N(x,y) := (\nu(y) \to (\nu(x) \odot \nu(\neg y \to \neg x))) \to (\nu(x) \odot \nu(\neg y \to \neg x))$

we can write (SBL,6) as

• $M(x, y) \odot N(x, y) = \nu(y)$.

:

- M(x, y) = 1,
- $\bullet \ \mathsf{N}(\mathsf{x},\mathsf{y}) = \neg \mathsf{y} \to \sim (\nu(\mathsf{x}) \to \neg(\neg \mathsf{y} \to \neg \mathsf{x})).$

The axioms characterizing SBL_¬-algebras according to the foregoing theorem are mutually independent.

Sketch of proof:

```
(BL1) x \odot y = y \odot x,

(BL2) 1 \odot x = x,

(BL3) x \odot (x \rightarrow y) = y \odot (y \rightarrow x),

(BL4) (x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z),

(BL5) 0 \rightarrow x = 1,

(BL6) ((x \rightarrow y) \rightarrow z) \rightarrow (((y \rightarrow x) \rightarrow z) \rightarrow z) = 1,

(SBL) (x \odot y) \rightarrow 0 = (x \rightarrow 0) \lor (y \rightarrow 0),

(SBL<sub>3</sub>) y(x \rightarrow y) = y(\neg y \rightarrow \neg x);
```

The axioms characterizing SBL_¬-algebras according to the foregoing theorem are mutually independent.

Sketch of proof:

```
(BL1) x \odot y = y \odot x,

(BL2) 1 \odot x = x,

(BL3) x \odot (x \rightarrow y) = y \odot (y \rightarrow x),

(BL4) (x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z),

(BL5) 0 \rightarrow x = 1,

(BL6) ((x \rightarrow y) \rightarrow z) \rightarrow (((y \rightarrow x) \rightarrow z) \rightarrow z) = 1,

(SBL) (x \odot y) \rightarrow 0 = (x \rightarrow 0) \lor (y \rightarrow 0),

SBL¬1) \neg \neg x = x,
```

Theorem

The axioms characterizing SBL_-algebras according to the foregoing theorem are mutually independent.

Sketch of proof:

(BL1)
$$x \odot y = y \odot x$$
,
(BL2) $1 \odot x = x$,
(BL3) $x \odot (x \to y) = y \odot (y \to x)$,
(BL4) $(x \odot y) \to z = x \to (y \to z)$,
(BL5) $0 \to x = 1$,
(BL6) $((x \to y) \to z) \to (((y \to x) \to z) \to z) = 1$,
(SBL) $(x \odot y) \to 0 = (x \to 0) \lor (y \to 0)$,
(SBL_¬1) $\neg \neg x = x$,
(SBL_¬3) $\nu(x \to y) = \nu(\neg y \to \neg x)$;

(BL1) $x \odot y = y \odot x$

Two-element set $A = \{0, 1\}$:

$$\begin{array}{c|cccc} \odot & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 0 & 1 \\ \end{array}$$

$$0\odot 1=1\neq 0=1\odot 0$$

(BL2)
$$1 \odot x = x$$

Two-element set $A = \{0, 1\}$:

$$\begin{array}{c|ccccc} \land & 0 & 1 \\ \hline 0 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

$$1 \odot 0 = 1 \neq 0$$

(BL3)
$$x \odot (x \rightarrow y) = y \odot (y \rightarrow x)$$

Two-element set $A = \{0, 1\}$:

$$\begin{array}{c|cccc} \land & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 1 & 1 \end{array}$$

$$1 \odot (1 \to 0) = 1 \neq 0 = 0 \odot (0 \to 1)$$

(BL4)
$$(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$$

Three-element chain $B = \{0, x, 1\}$:

$$(x \odot x) \rightarrow x = x \neq 1 = x \rightarrow (x \rightarrow x)$$

(BL5)
$$0 \to x = 1$$

Three-element set $B = \{0, x, 1\}$:

$$\begin{array}{c|ccccc} \odot & 0 & x & 1 \\ \hline 0 & x & x & 0 \\ x & x & x & x \\ 1 & 0 & x & 1 \\ \end{array}$$

$$0 \rightarrow x = x \neq 1$$

(BL6)
$$((x \rightarrow y) \rightarrow z) \rightarrow (((y \rightarrow x) \rightarrow z) \rightarrow z) = 1$$

Three-element set $B = \{0, x, 1\}$:

(SBL)
$$(x \odot y) \rightarrow 0 = (x \rightarrow 0) \lor (y \rightarrow 0)$$

Three-element chain $B = \{0, x, 1\}$:

$$(x \odot x) \rightarrow 0 = 1 \neq x = (x \rightarrow 0) \lor (x \rightarrow 0)$$

$$(SBL_{\neg}1) \quad \neg \neg x = x$$

Two-element chain $A = \{0, 1\}$:

$$\begin{array}{c|cccc} \odot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

$$\begin{array}{c|cccc} \sim & 0 & 1 \\ \hline & 1 & 0 \end{array}$$

$$\begin{array}{c|ccc}
\nu & 0 & 1 \\
\hline
& 0 & 0 \\
\end{array}$$

$$\neg \neg 0 = 1 \neq 0$$

(SBL_¬3)
$$\nu(x \rightarrow y) = \nu(\neg y \rightarrow \neg x)$$

Two-element chain $A = \{0, 1\}$:

$$\nu(1 \to 0) = \nu(0) = 1 \neq 0 = \nu(1) = \nu(0 \to 1) = \nu(\neg 0 \to \neg 1)$$

Outline

- Motivation
- 2 Results
- References

Ciucci, D.

On the axioms of residuated structures: Independence, dependences and rough approximations.

Fund. Informaticae, 69: 367-402, 2006.

Esteva, F., Godo, L., Hájek, P., Navara, M. Residuated fuzzy logic with an involutive negation. *Arch. Mat. Logic*, 39: 103–124, 2000.

Hájek, P. Metamathematics of Fuzzy Logic. *Kluwer*, 1998.