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Boolean algebras

A Boolean algebra is a structure A = (A, A, V,—,0,1) such e
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Boolean algebras

A Boolean algebra is a structure A = (A, A, V,—,0,1) such
that (we define -a =a — 0) [a = b= —-a Vb= =(a A —b)]

= (A,A,V,0,1) is a bounded lattice,
m forall a,b,ce A,

aNb<c<b<a— c(A-residuation)
m foralla e A, ——a =a (alt. a V —a = 1).

Exercise. Distributivity (of A over V) and complementation
follow from the above conditions. Also, A-residuation can be
written equationally.
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Boolean algebras provide algebraic semantics for classical
propositional logic.
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Algebras of relations

Let X be a setand Rel(X) = P(X x X) be the set of all
binary relations on X.
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Algebras of relations

Let X be a setand Rel(X) = P(X x X) be the set of all
binary relations on X.

For relations R, and S, we denote by
= R~ the complement and by R" the converse of R

1 Is the equality/diagonal relation on X

R ; S the relational composition of R and S
R\S=(R;S )" and S/R=(S";R)”
R—S=(RNS7)" =R US
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Let X be a setand Rel(X) = P(X x X) be the set of all e
binary relations on X.
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= R~ the complement and by R" the converse of R s
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= R; S the relational composition of R and S EE_E::;EZ“’T;"”S’ t_
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Relation algebras

A Relation algebra is a structure

A = (A7 /\7 \/7 s \7 /7 Oa 17 (_)_) such that (O — ]-_)

= (A, A,V, L, T,()7)Iis aBoolean algebra
(wedefine L=1A1"and T =1V 17),

(A,;,1) is a monoid
forall a,b,c € A,

a;b<csb<a\ce a<c/b(residuation)

foralla € A, =—a = a (we define —a = a\0 = 0/a)
= o(a7) =(ma)” and ~(—z; —y) = (&7 597 )"
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A lattice-ordered group is a lattice with a compatible group e
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Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid, is e
an algebra L — (L7 /\7 \/7 E \7 /7 1) SUCh that RL examples

[ | (L’ /\7 \/) |S a Iattlce, Boolean algebras

Algebras of relations
. . Relation algebras
= (L,-,1)is a monoid and ¢-groups
Powerset of a monoid

u fOl' a” CL, b, C E L, Ideals of a ring

Properties
a/b S C <f/’ b S CL\C <:> a S C/b Properties (proofs)

Lattice/monoid properties

Linguistics (verbs)

We have CL\C — ma;X{b . ab S C} Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid, is
an algebra L = (L, A, V, -, \,/,1) such that

= (L,A,V)is a lattice,

= (L,-,1)is a monoid and

m foralla,b,c e L,
ab<ceb<a\cea<c/b

We have a\c = max{b: ab < c}.

A pointed residuated lattice an extension of a residuated
lattice with a new constant 0. (~z = x\O and —x = 0/z.)
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A pointed residuated lattice an extension of a residuated
lattice with a new constant 0. (~z = x\O and —x = 0/z.)

Subvariety lattice (atoms)
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A (pointed) residuated lattice is called e

= commutative, if (L, -, 1) is commutative (zy = yx). Representation - Frames
= distributive, if (L, A, V) is distibutive Applcations of rames
= integral, if it satisfies z < 1 e
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contractive, if it satisfies z < x2
involutive, If it satisfies ~—x = 2 = —~uz.



Properties

1. z(yVz)=xyVazand (yVz)r =y V zx e

2. 2\(y A z) = (x\y) A (2\2) and (y A 2)/z = (y/x) A\ (2/7) L s

3. z/(yVz) = (z/y) A(z/z) and (y V 2)\z = (y\z) A (2\7) A

4 (z/y)y < wand y(y\z) < @

5. x(y/z) < (vy)/z and (2\y)z < 2\(yz) e e

6. (2/y)/= = o/ (2y) and 2\(y\a) = (y2)\a

7. 2\0/5) = G

8. xz/l=x=1\z S

0.1 <x/rand 1 <zx\z ST
10. z < y/(x\y) and = < (y/x)\y Subvariet lttice jins)
11 y/((y/x)\y) = y/x and (y/(z\y))\y = z\y e
12.2/(0\0) = a0 (/0)\0 = —
13. (2/y)(y/x) < z/x and (z\y)(y\z) < 2\z J—

Multiplication is order preserving in both coordinates. Each
division operation is order preserving in the numerator and
order reversing in the denominator.
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Properties (proofs)

r(yVz)<w SyVz<z\w
Sy, z < x\w
S ay,rz < w

S axyVaez < w
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Lattice/monoid properties

(z/y)/z)x < (2/y)y <z = (2/y)(y/z) < z/z
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Lattice/monoid properties

(z/y)/z)x < (2/y)y <z = (2/y)(y/z) < z/z

RLs satisfy no special purely lattice-theoretic or
monoid-theoretic property.
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Lattice/monoid properties

(z/y)/z)x < (2/y)y <z = (2/y)(y/z) < z/z

RLs satisfy no special purely lattice-theoretic or
monoid-theoretic property.

Every lattice can be embedded in a (cancellative) residuated
lattice.

Every monoid can be embedded in a (distributive) residuated
lattice.
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Linguistics (verbs)

We want to assign (a limited number of) linquistic types to e

English words, as well as to phrases, in such a way that we R

will be able to tell if a given phrase is a (syntacticly correct) Boolean algebras
Algebras of relations

sentence. Relon algobres
£-groups

We will use n for ‘noun phrase’ and s for ‘sentence’. o monee
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Linguistics (verbs)

We want to assign (a limited number of) linquistic types to
English words, as well as to phrases, in such a way that we
will be able to tell if a given phrase is a (syntacticly correct)
sentence.

We will use n for ‘noun phrase’ and s for ‘sentence’.

For phrases we use the rule: if A: ¢ and B : b, then AB : ab.
We write C' : a\b if A : a implies AC : b, for all A.

Likewise, C : b/a if A : aimplies C'A : b, for all A.
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Linguistics (verbs)

We want to assign (a limited number of) linquistic types to e
English words, as well as to phrases, in such a way that we R
will be able to tell if a given phrase is a (syntacticly correct) Boolean algebras
Algebras of relations
Se nte n Ce . R:Iation algebras
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We will use n for ‘noun phrase’ and s for ‘sentence’. o monee
Residuated lattices
For phrases we use the rule: if A: ¢ and B : b, then AB : ab. T
roperties (proofs
We write C : a\b if A : a implies AC : b, for all A. s —
Linguistics (adverbs)
Likewise, C : b/a if A : aimplies C'A : b, for all A. Congruences
We assign type n to ‘John.” Clearly, ‘plays’ has type n\s, as Sl 5T (T
all intransitive verbs. Sl ety e (e
John plays =
n(n\S) S S Representation - Frames
n n\s

Applications of frames

Some words may have more than one type. We write a < b if
every word with type a has also type b.

Undecidability
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(John plays) here in(n\s)|(s\s) < s(s\s) < s Outiine
n n\ S S\ S RL examples

Boolean algebras
Algebras of relations

John (plays here) o ——
s\s < (n\s)\(n\s)
n n\S (’I’L\S)\(TL\S) Powerset of a monoid

Ideals of a ring
Residuated lattices

Note that ‘plays’ is also a transitive verb, so it has type Froper (o019
(n\s)/n.
John lays  football
(p y ) [n((n\S)/n)]n S S Congruences
n (n\S)/n n Subvariety lattice (atoms)
(John  plays) football (n\s)/n <n\(s/n) Subvariety ltice (oins)

" n\(s/n) n n[(n\(s/n))n] < s Logi

Representation - Frames

Also, for ‘John definitely plays football’, note that we need to AEElERens oL e
have S\S S (n\s)/(n\s) Undecidability
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n n\ S S\ S RL examples
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Algebras of relations

John (plays here) o ——
s\s < (n\s)\(n\s)
n n\S (’I’L\S)\(TL\S) Powerset of a monoid

Ideals of a ring
Residuated lattices

Note that ‘plays’ is also a transitive verb, so it has type Froper (o019
(n\s)/n.
John lays  football
(p y ) [n((n\S)/n)]n S S Congruences
n (n\S)/n n Subvariety lattice (atoms)
(John  plays) football (n\s)/n <n\(s/n) Subvariety ltice (oins)

" n\(s/n) n n[(n\(s/n))n] < s Logi

Representation - Frames

Also, for ‘John definitely plays football’, note that we need to AEElERens oL e
have S\S S (n\s)/(n\s) Undecidability
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Q: Can we decide (in)equations in residuated lattices?
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Congruences G, B

Definition. A congruence on an algebra A is an equivalence ™
relation on A that is compatible with the operations of A.
(Alt.the kernel of a homomorphism out of A.)
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Congruences G, B

Definition. A congruence on an algebra A is an equivalence
relation on A that is compatible with the operations of A.
(Alt.the kernel of a homomorphism out of A.)

Congruences in groups correspond to normal subgroups.

Given a congruence 6 on a group G, the congruence class
1] of 1 is a normal subgroup.

Given a normal subgroup N of a group G, the relation 0y is a
congruence, where (a,b) € 0y iff a\b € N iff {a\b,b\a} C N.
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Congruences G, B

Definition. A congruence on an algebra A is an equivalence ™
relation on A that is compatible with the operations of A.
(Alt.the kernel of a homomorphism out of A.)
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Congruences

. Congruences 6.8 |
Congruences in groups correspond to normal subgroups. conmenE R
. Correspondence
Given a congruence 6 on a group G, the congruence class .
1] of 1 is a normal subgroup. SEm e

Lattice isomorphism

Given a normal subgroup N of a group G, the relation  isa  composiions

Generation

congruence, where (a,b) € Oy iff a\b € N iff {a\b,b\a} C N. Generation of CNM

Subvariety lattice (atoms)

Congruences in Boolean algebras correspond to filters.

Subvariety lattice (joins)

Given a congruence # on a Boolean algebra A, the Logi
congruence class [1]y of 1 is a filter of A. Representation - Frames
Given a filter F' of a Boolean algebra A, 6 is a congruence, Applications of frames
Where (CL, b) E HF |ff a < b E F |ff {a — b7 b —_— a} g F Undecidability

References

Note that a filter is a subset of A closed under {A,V, —, 1}
thatis convex (x <y < zand z,z € F implies y € F).



Congruences R, M

Congruences on rings correspond to ideals.
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Congruences R, M

Congruences on rings correspond to ideals.
Congruences on ¢-groups correspond to convex ¢-subgroups.

Congruences on monoids do not correspond to any
particular kind of subset.

Do congruences on residuated lattices correspond to certain
subsets?
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Congruences and sets

Let A be aresiduated lattice and a, z € A. We define the
conjugates \,(z) = [a\(za)] A1 and p,(z) = ax/a A 1.

An iterated conjugate is a composition v,, (Va, (- - - Ya, (2))),
where n € w, ay,as,...,a, € Aandv,, € {\,,, pa, }, for all .
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An iterated conjugate is a composition v,, (Va, (- - - Ya, (2))),
where n € w, ay,as,...,a, € Aandv,, € {\,,, pa, }, for all .

X C Ais called normal, if it is closed under conjugates.
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Congruences and sets

Let A be a residuated lattice and a,z € A. We define the e
conjugates \,(z) = [a\(za)] A1 and p,(z) = ax/a A 1. N
An iterated conjugate is a composition v, (Ya, (- - - Va,, (2))), Congruences
where n € w, ay,as,...,a, € Aand~v,, € {\,,, pa, }, for all . Sets
X C Ais called normal, if it is closed under conjugates. Eg“;pCNdj
We will be considering correspondences between: EN:pmgphm
= Congruences on A Coneraton
= Convex, normal subalgebras (CNSs) of A Subvariety atice (atorms)
= Convex , normal (in A) submonoids (CNMs) of A= =| 1 S 3 il 52 1)
= Deductive filtersof A: F C A e
M T 1 g F Representation - Frames
0 a,a\b € Fimpliesb c F (eqv. T F = F) eSS
0 ac Fimpliesanle F (eqv. F'is A-closed) Undecidebily
0 a € F implies b\ab, ba/b € F References



Correspondence

If S'isa CNS of A, M a CNM of A—, 8 a congruence on A e
and F' a DF of A, then RL xamples

1. M,(S)=S~, M.(f) = [1], and M;(F) = F~ are CNMs ~Conauences

Congruences G, B

of A7, Congruencs and e
- —(
2. Sm(M) = :(M), SC(H) = [1]9 and Sf(F) = E(F ) are CNM to CNS

CNS to congruence
C N SS Of A— ] CNS to congruence
Lattice isomorphism

3. Fs(S)=18, F,,,(M)=1M, and F.(0) = T[1] are DFs of Compesiions
A . Generation of CNM

4. 0,(5) ={(a,b)la=b e S}, O (M) ={(a,b)ja—be M}  Soombommens
and @f(F) o {(a’ b)’a<_> b € F} — {(a’ b)|a/\b, b\a c F} Subvariety lattice (joins)

are congruences of A. ol
Representation - Frames
CI, < b — a,\b /\ b\a, /\ 1 Applications of frames

Undecidability

=(X)={acA:z<a<2x\l,forsomezc X}.

References




CNM to CNS
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CNM to CNS

=(M)={a € Alxr <a < z\l, forsome x € M} isa CNS. Tie

Outline

Claim: a € Z2(M) iff dy,z € M such that y < a < 2\1. S
|nd66d, yz S Yy S a S Z\]_ S yz\l and Yz = M Congruences

Congruences G, B
Congruences R, M
Congruences and sets
Correspondence

CNS to congruence
CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




CNM to CNS

=(M)={a € Alxr <a < z\l, forsome x € M} isa CNS. Tie
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Claim: a € Z2(M) iff dy,z € M such that y < a < 2\1. S
Indeed, yz S Yy S a S Z\]_ S yz\l and Yz = M Congruences

Congruences G, B
Congruences R, M

COnVGXIty If a, b & E(M), then El.fC, Yy & M SUCh that Congruences and sets

X S a S x\]. and y S b S y\l rennce
If a S C S b, then €T S a S C S b S y\l’ SO c & E(M). CNS to congruence

CNS to congruence
Lattice isomorphism
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CNM to CNS

=(M)={a € Alxr <a < z\l, forsome x € M} isa CNS. Tie

Outline

Claim: a € Z2(M) iff dy,z € M such that y < a < 2\1. S
Indeed, yz S Yy S a S Z\]_ S yz\l and Yz = M Congruences

Congruences G, B

Convexity: If a,b € Z(M), then 3z, y € M such that S

Correspondence

rseszi\landy < b s\l
If a S C S b, then €T S a S C S b S y\l’ SO c & E(M). CNS to congruence

CNS to congruence
Lattice isomorphism

Subalg.: zy <z Ay <aAb<z\1Ay\l=(xVy\l <z\l Composions
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Representation - Frames

Applications of frames

Undecidability
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CNM to CNS

=(M)={a € Alxr <a < z\l, forsome x € M} isa CNS. Tie

Outline

Claim: a € Z2(M) iff dy,z € M such that y < a < 2\1. S
Indeed, yz S Yy S a S Z\]_ S yz\l and Yz = M Congruences

Congruences G, B

Convexity: If a,b € =(M), then 3z, y € M such that S

Correspondence

rseszi\landy < b s\l
If a S C S b, then €T S a S C S b S y\]_’ SO c & E(M). CNS to congruence
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SUbalg. ij S I /\ y S a /\ b S x\l /\ y\l — (ZE \/ y)\]. S x\l Ef:]c;eozzz:;rphlsm
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CNM to CNS

=(M)={a € Alxr <a < z\l, forsome x € M} isa CNS. Tie

Claim: a € Z(M) iff 3y, 2 € M such that y < a < z\1. RL examples
Indeed, yz <y <a <2\l <yz\landyz € M. Congences_

Congruences R, M

COnVGXIty If a, b & E(M), then Elf,C, Yy & M SUCh that Congruences and sets

X S a S x\l and y S b S y\l rennce
fa<c<b thens <a<e<b<yl\l soceE(M). e
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CNM to CNS

=(M) ={a € Alx <a < x\1, forsome x € M} is a CNS. e

Claim: a € Z(M) iff 3y, 2 € M such that y < a < z\1. RL examples
Indeed, yz <y <a <2\l <yz\land yz € M. S
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z<a<z\landy <b<y\l
Ifa<c<bthenz <a<c<b<y\l,soceZ(M). NS o congrunce
Subalg.: zy <z Ay <aAb<2\1Ay\l=(xVy)\l <z\l ;Tn:eo:zxsrphlsm

Generation of CNM

r<zVy<aVb<zaz\1Vy\l < (zAy\l < (zy)\l

Subvariety lattice (atoms)

zy < ab < (2\L)(y\1) < 2\(1\1) = (yx)\L

Logic

Aa(yz) < a\yza < a\ly/(z\1)]a < a\[b/ala < a\b < 2\(Y\1) = YZp] o s

Applications of frames

Undecidability
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CNM to CNS

=(M) ={a € Alx <a < x\1, forsome x € M} is a CNS. e

Claim: a € Z(M) iff 3y, 2 € M such that y < a < z\1. RL examples
Indeed, yz <y <a <2\l <yz\land yz € M. S
Convexity: If a,b € =(M), then 3z, y € M such that S
z<a<z\landy <b<y\l
Ifa<c<bthenz <a<c<b<y\l,soceZ(M). NS o congrunce

Lattice isomorphism

Subalg.: zy <z Ay <aAb<z\1Ay\l=(xVy\l <z\l Composions

r<zVy<aVb<z\1Vy\l < (zAy\l < (xy)\1l

Subvariety lattice (atoms)

ry < ab < (@\DE\D) < 2\(\D) = (y2)\1
Aalye) < a\gaa < a\[y/(@\D]a < a\[b/aJa < a\b < 2\(G\L) = Yol o
vy < 2/(\D) < afb < (@\D/y < [2penm ()]

Undecidability

(for u = (x\1)/y we have zp,(y)u < x{uy/utu < zuy < 1)
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CNM to CNS

ZE(M)={ae Alx <a < z\l, forsomez € M} is a CNS. e

Claim: a € Z(M) iff 3y, 2z € M such that y < a < z\1. RL exampes
Indeed, yz <y <a <2\l <yz\landyz € M. T o
Convexity: If a,b € =(M), then 3z, y € M such that S
z<a<z\landy <b<y\l
Ifa<c<bthenr <a<c<b<y\l soce=EM). msfbni
Subalg.: zy <z Ay <aAb<z\1Ay\l=(xVy\l <z\l S

Generation
Generation of CNM

r<zVy<aVb<z\1Vy\l < (zAy\l < (xy)\1l

Subvariety lattice (atoms)

ry < ab < (@\D(\D) < 2\(H\D) = (p)\1
Aalye) < a\yaa < a\[y/(@\Da < a\[/ala < a\b < 2\(\D) = yoll o
vy < 2/(\D) < afb < (@\D/y < [2penm ()]

Undecidability

(for u = (x\1)/y we have zp,(y)u < x{uy/utu < zuy < 1)
Normality: As A.(z)A\.(2\1) < c\zx(z\1)c Al <c\eA1l=1,

Ae() < Ae(a) < Ae(x\1) < Ae(x)\1
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CNS to congruence

O4(S) = {(a,b)la<—b € S} is a congruence.
a—b=a\bAb\a Al
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CNS to congruence

O4(S) = {(a,b)la<—b € S} is a congruence.
a—b=a\bAb\a Al

Equivalence: O,(S) is reflexive and symmetric. If
a<—bb—ce S, we have

(a<b)(b—c)A(b<—c)la—b) <
< (@D)(B\) A (AB(BAa) A1 < (are) < 1.

Compatibility: Assume a«+b € S and ¢ € A.
a\b < ca\cb impliesa«—b < ca«~cb <1

Title
Outline

RL examples

Congruences
Congruences G, B
Congruences R, M
Congruences and sets
Correspondence

CNM to CNS

CNS to congruence
Lattice isomorphism

Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




CNS to congruence

O4(S) = {(a,b)la<—b € S} is a congruence.
a—b=a\bAb\a Al

Equivalence: O,(S) is reflexive and symmetric. If
a<—bb—ce S, we have
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CNS to congruence

O4(S) = {(a,b)la<—b € S} is a congruence. e
a—b=a\bAb\a Al
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Equivalence: O,(S) is reflexive and symmetric. If Congruences

Congruences G, B
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Representation - Frames
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CNS to congruence

O4(S) = {(a,b)la<—b € S} is a congruence. e
a—b=a\bAb\a Al

RL examples

Equivalence: O,(S) is reflexive and symmetric. If Congruences

Congruences G, B

CL Aad b, b < C G S, We have Congruences R, M
Congruences and sets
Correspondence

(Cl,<—>b)(b<—>c) A (b(—)C)(CL(—)b) S CNM to CNS

< (@\b)(b\e) A (\b)(b\a) A1 < (a«sc) < 1.
Generation
Generation of CNM

Compatibility: Assume a«+b € S and ¢ € A.

Subvariety lattice (atoms)

a\b < ca\cb impliesa«—b < ca«~cb <1

Subvariety lattice (joins)
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Representation - Frames
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a—b<(aANc)\(bAc). Likewise, a<—b < (bAc)\(aAc). So, .
a <— b S (CL /\ C) <_>(b /\ C) S ]. References

a\b < (c\a)\(c\b) and b\a < (c\b)\(c\a) imply
a—b<(c\a)—(c\b) <1
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CNS to congruence

a\b < (a\c)/(b\c) and b\a < (b\c)/(a\c) imply
a—b<(a\c)='(b\c) <1

where a —<'b=a/bAb/a N 1.
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CNS to congruence

a\b < (a\c)/(b\c) and b\a < (b\c)/(a\c) imply Bt
a+—b< (a\c)<—>'(b\c) <1 RL examples

Where a <—>/ b = a,/b /\ b/a, /\ ]__ Congruences

Congruences G, B

Congruences R, M
So, (a\c) </ (b\c) € S and (a\c) < (b\c) € S. Conneres i

CNM to CNS

CNS to congruence

CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




CNS to congruence

a\b < (a\c)/(b\c) and b\a < (b\c)/(a\c) imply Tite

Outline

a < b S (CL\C)<—>/(b\C) S 1 RL examples
Where a <—>/ b = a,/b /\ b/a, /\ ]__ Congruences

Congruences G, B

Congruences R, M
/
SO, (CL\C) s (b\C) - S and (CL\C) H(b\C) c S Congruences and sets
Correspondence
CNM to CNS
CNS to congruence
: . / § CNS to congruence
Claim: a<'be Siffa—be S. P
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




CNS to congruence

a\b < (a\c)/(b\c) and b\a < (b\c)/(a\c) imply Bt
a+—b< (a\c)<—>'(b\c) <1 RL examples

Where a <—>/ b = a,/b /\ b/a, /\ ]__ Congruences

Congruences G, B

Congruences R, M
So, (a\c) </ (b\c) € S and (a\c) < (b\c) € S. Conneres i

CNM to CNS

CNS to congruence

Clalm a <—)/ b - S |ff a <— b - S_ CNS to congruence

Lattice isomorphism

Ap(a<>"'d) =b\[a/bAD/aAN1]bAT < b\aAl —

Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




CNS to congruence

a\b < (a\c)/(b\c) and b\a < (b\c)/(a\c) imply Bt
a+—b< (a\c)<—>'(b\c) <1 RL examples

Where a <—>/ b = a,/b /\ b/a, /\ ]__ Congruences

Congruences G, B

Congruences R, M
So, (a\c) </ (b\c) € S and (a\c) < (b\c) € S. Conneres i

CNM to CNS

CNS to congruence

Clalm a <—)/ b - S |ff a <— b - S_ CNS to congruence

Lattice isomorphism

Ap(a<>"'d) =b\[a/bAD/aAN1]bAT < b\aAl —

Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Mp(a—"D) A Xy (a="b) <a—b<1

Logic

Representation - Frames

Applications of frames

Undecidability

References




Lattice iIsomorphism

1. The CNSs of A, the CNMs of A~ and the DF of A form e
lattices, denoted by CNS(A), CNM(A) and Fil(A),
respectively. S—

2. All the above lattices are isomorphic to the congruence conaruences 6.8

Congruences R, M

Iattlce COH(A) Of A_ V|a the mapS deflned above Congruences and sets

3. The composition of the above maps gives the O 0 CNS
corresponding map; e.g., Ms(S.(0)) = M.(0). oNS 10 congruence

RL examples

CNS to congruence
Lattice isomorphism
Compositions

Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Lattice isomorphism

1. The CNSs of A, the CNMs of A~ and the DF of A form e
lattices, denoted by CNS(A), CNM(A) and Fil(A), e
respectively. Conaruences

2. All the above lattices are isomorphic to the congruence S
lattice Con(A) of A via the maps defined above. ongeness e

3. The composition of the above maps gives the NS 5 songrence
corresponding map; e.g., Ms(S.(0)) = M.(0).

Claim: S, and ©, are inverse maps. Ceneraton of

S — [1]@8(5) a & S |mp||eS a <— ]. — CL\l /\ a /\ 1 -~ S Subvariety lattice (atoms)

Conversely’ (a PAEEN ]_) S a S (a <—> 1)\1 Subvariety lattice (joins)

Representation - Frames

Applications of frames

Undecidability

References




Lattice isomorphism

1. The CNSs of A, the CNMs of A~ and the DF of A form e
lattices, denoted by CNS(A), CNM(A) and Fil(A), e
respectively. Conaruences

2. All the above lattices are isomorphic to the congruence S
lattice Con(A) of A via the maps defined above. ongeness e

3. The composition of the above maps gives the NS 5 songrence
corresponding map; e.g., Ms(S.(0)) = M.(0).

Claim: S, and ©, are inverse maps. Ceneraton of

S — [1]@8(5) a & S |mp||eS a <— ]. — CL\l /\ a /\ 1 -~ S Subvariety lattice (atoms)

Conversely’ (a PAEEN ]_) S a S (a <—> 1)\1 Subvariety lattice (joins)

0 = O,(S.(0)): If (a,b) € ©,([1]g), then a« b € [1]g, SO L

< b 9 1 Representation - Frames

Applications of frames

Undecidability

References




Lattice isomorphism

1. The CNSs of A, the CNMs of A~ and the DF of A form e
lattices, denoted by CNS(A), CNM(A) and Fil(A), e
respectively. Conaruences

2. All the above lattices are isomorphic to the congruence S
lattice Con(A) of A via the maps defined above. ongeness e

3. The composition of the above maps gives the NS 5 songrence
corresponding map; e.g., Ms(S.(0)) = M.(0).

Claim: S, and ©, are inverse maps. Ceneraton of

S — [1]@8(5) a & S |mp||eS a <— ]. — CL\l /\ a /\ 1 -~ S Subvariety lattice (atoms)

Conversely’ (a PAEEN ]_) S a S (a <—> 1)\1 Subvariety lattice (joins)

O = @S(Sc(e)) | (CL, b) < @3([1]9), then a<—b € [1]9, SO Logic |

a< b6 1. Therefore, a 6 a(ab) < a(a\b) < b, soaVbob. —

Applications of frames

Undecidability

References




Lattice isomorphism

1. The CNSs of A, the CNMs of A~ and the DF of A form e
lattices, denoted by CNS(A), CNM(A) and Fil(A), e
respectively. Conaruences

2. All the above lattices are isomorphic to the congruence S
lattice Con(A) of A via the maps defined above. ongeness e

3. The composition of the above maps gives the NS 5 songrence
corresponding map; e.g., Ms(S.(0)) = M.(0).

Claim: S. and O, are inverse maps. S

S — [1]@8(5) a & S |mp||eS a <— ]. — CL\l /\ a /\ 1 -~ S Subvariety lattice (atoms)

Conversely, (a, — ]_) S a S (a, — 1)\]_ Subvariety lattice (joins)

O = @S(Sc(e)) | (CL, b) < @3([1]9), then a<—b € [1]9, SO Logic |

a< b6 1. Therefore, a 6 a(ab) < a(a\b) < b, soaVbob. —

Applications of frames

Likewise, a Vb0 a, SO a0 b.

Undecidability

References




Lattice isomorphism

1. The CNSs of A, the CNMs of A~ and the DF of A form e
lattices, denoted by CNS(A), CNM(A) and Fil(A), e
respectively. Conaruences

2. All the above lattices are isomorphic to the congruence S
lattice Con(A) of A via the maps defined above. ongeness e

3. The composition of the above maps gives the NS 5 songrence
corresponding map; e.g., Ms(S.(0)) = M.(0).

Claim: S. and O, are inverse maps. S

S — [1]@8(5) a & S |mp||eS a <— ]. — CL\l /\ a /\ 1 -~ S Subvariety lattice (atoms)

Conversely, (a, — ]_) S a S (a, — 1)\]_ Subvariety lattice (joins)

O = @S(Sc(e)) | (CL, b) < @3([1]9), then a<—b € [1]9, SO Logic |

a< b6 1. Therefore, a 6 a(ab) < a(a\b) < b, soaVbob. —

Applications of frames

Likewise, a Vb0 a, SO a0 b.

Undecidability

Conversely, if a 6 b, then
1= (a\a Ab\bA1)O (a\bAb\aN1l)=ab.

References




Compositions

Claim: S¢(F) = S.(0¢(F)). (Sketch)

Title
Outline

RL examples

Congruences
Congruences G, B
Congruences R, M
Congruences and sets
Correspondence

CNM to CNS

CNS to congruence
CNS to congruence

Lattice isomorphism

Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Compositions

Claim: S¢(F') = S.(©¢(F)). (Sketch) Tie

Outline

Ifa € S.(O¢(F)), thena Of(F) 1,s0a\l,1\a € F. RL exampls
Hence a/, ]_/a/ E F. Slnce ]_ 6 F, We getw — a/\ 1/0; /\ 1 E F—. Congruences

Congruences G, B

Obviously, x < a;also a < (1/a)\1 < z\1. S ——

Congruences and sets
Correspondence
Thus, a € Sf(F). e e
CNS to congruence
CNS to congruence
Lattice isomorphism
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Compositions
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CNM to CNS
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Thus both a/1 and 1/a are in F'. Hence, a € [1]g,(F)- Subvarey ltice (toms)
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Generation

If X is a subset of A= and Y is a subset of A4, then e
1. the CNM M (X) of A~ generated by X is equal to AL examples
E o HF (X) o Congruences

Congruences G, B

2. The CNS S(Y) of A generated by Y is equal to =ZTIT'A(Y').  conarencesr.wm

Congruences and sets

3. The DF F(Y) of A generated by Y C A is equal to g
THF(Y) = THF(Y /\ ]_) CNS to congruence

CNS to congruence
Lattice isomorphism

4. The congruence ©(P) on A generated by P C A% isequal e
to ©,,(M(P")), where P’ = {a < b|(a,b) € P}.

Generation of CNM

Subvariety lattice (atoms)

XANl={zANl:2€ X}

Subvariety lattice (joins)

AX)={z—1l:2€ X} Logi

II(X) ={z122--2p:n>1,2, € X} U{1} Representation - Frames
I'(X) = {7(x) : v is an iterated conjugate } Applications of ames
E(X)={acA:x<a<z\l forsomezr e X} e

== (X)={ac A:x<a<1,forsomezc X} o
a—b=a\bAb\aN1l



Generation of CNM

Clearly, if M is a CNM of A~ that contains X, then it e
contains I'(X), by normality, III'(X'), since M is closed under
product, and =~ III'(X), since M is convex and contains 1.

RL examples

Congruences
Congruences G, B

We will now show that =~ TII'(X) itself is a CNM of A~; it Congruences R, M
. . . . Congruences and sets

obviously contains X. It is clearly convex and a submonoid of  caresonence
A~. To show that it is convex, consider a € =~ III'(X) and NS 10 congrence
u € A. There are z4,...,z, € X and iterated conjugates O
Y1y« --,Yn SUCh that v1 (1) - - - Y0 (2n) < a < 1. We have composiions

H )\’U, (’YZ (sz)) S )\U(H ’Y’L (ZEZ)) S )\’U,(a’) S ]_ Subvariety lattice (atoms)

Subvariety lattice (joins)

Idea for n = 2: gt

Representation - Frames

Au(a1) Ay (az) = (u\aru A 1) (u\asu A 1) < (u\ayu)(u\agu) A1

Applications of frames

S U\CL1U(U,\OJ2U) A1 S U\CLlCLQU ANl = >\u (ajlaj2). Undecidability

Also, A\, (vi(z;)) € T(X) and [ Xy (vi(z;)) € IIT'(X), so References
A (a) € 2~ II'(X). Likewise, we have p,(a) € Z-IIT'(X).
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The subvariety lattices of HA (Heyting algebras) and Br
(Brouwerian algebras) are uncountable, hence so are A(RL,)

Congruences

Subvariety lattice (atoms)
and A(RL).
BA and 2
i BA: an atom
We WI II Fin. gen. atoms

Cancellative atoms
Idempotent rep. atoms

= determine the size of the set of atoms in A(RL,).

Subvariety lattice (joins)

= outline a method for finding axiomatizations of certain Logic
Varletl eS Representation - Frames

Applications of frames

= give a description of joins in A(RL,).

Undecidability
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The variety BA of Boolean algebras is generated by the
2-element algebra 2. BA = HSP(2)= V(2).

H: homomorphic images
S: subalgebras

P: direct products

V = HSP

Proof idea: Use the prime ideal-filter theorem for distributive
lattices to show that every Boolean algebra is a subdirect
product of copies of 2.
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BA and 2

The variety BA of Boolean algebras is generated by the
2-element algebra 2. BA = HSP(2)= V(2).

H: homomorphic images
S: subalgebras

P: direct products

V = HSP

Proof idea: Use the prime ideal-filter theorem for distributive
lattices to show that every Boolean algebra is a subdirect
product of copies of 2.

Subdirect product: A subalgebra of a product such that all
projections are onto.
Clearly, 2 is subdirectly irreducible.

Subdirectly irreducible: non-trivial and
= |t cannot be written as a subdirect product of a family that
does not contain it.

= Alt. its congruence lattice is A U T p.
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BA: an atom
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BA: an atom

The variety BA is an atom in the lattice of subvarieties of pRL. e

Outline

pRL is a congruence distributive variety (RLs have lattice RL examples
reducts) so Jonsson’s Lemma applies: Congruences
Given a class K C RL;, the subdirectly irreducible algebras Subvarey latice etoms)
V(K)sy in the variety generated by X are in HSPy(K). e r———
An ultraproduct A € Py(K) is obtained by taking ;;uimm
. a prOdUCt HZEI AZ Of Az E IC and then Subvariety lattice (joins)
= aquotient [ [, A;/ =y by an ultrafilter U over I (maximal Logic

fllter O_n P(U)) B Representation - Frames

fOr C_L, b E l_’LGI A’L! C_L gU b |ff {’], E I : a‘?, p— b’l,} E U Applications of frames

Undecidability

First order formulas persist under ultraproducts.
Now, HSPy(2) = {2,1}, hence (V(2))sr = {2}.
Recall that V = V(Vs;).
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Fin. gen. atoms

We define Tu = uT = wu.

Note that T,, Is strictly sim-
ple (has no non-trivial subal-
gebras or homomorphic im-
ages).

So, V(T,) is an atom of
A(RL).

Moreover, all these atoms
are distinct and A(RL) has
at least denumerably many
atoms.
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Cancellative atoms

Left cancellativity (ab = ac = b = ¢) can be written e
equationally: x\(xy) = y. Right cancellativity is (yx)/x = v. B
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Prop. There are only 2 cancellative atoms: V(Z) and V(Z™). Subvariey latice (eoms)
BA and 2

Fin. gen. atoms
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Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames
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a\™* b= (a\b)Alandb/A a=(b/a) AL



Cancellative atoms

Left cancellativity (ab = ac = b = ¢) can be written e
equationally: x\(xy) = y. Right cancellativity is (yx)/x = v.
CanRL denotes the variety of cancellative RLSs.

RL examples

Congruences

Prop. There are only 2 cancellative atoms: V(Z) and V(Z~).  suareyatice aons)

Size

and 2

Let L € CanRL. Fora < 1, we have 1 < 1/a. e

Fin. gen. atoms
Claim: If da < 1 with 1/a = 1, then Sg(a) = Z~.

empotent rep. atoms
Since a < 1, we get a1 < a™, for all n € N, by order e,
preservation and cancellativity. Moreover, a*™ /a™ = a* and v
am/am+k — ]_, fOr a” m, k E N Representation - Frames

Applications of frames

Claim: If for all z < 1, we have 1 < 1/, then L is an /-group.

Fora € Lsetx = (1/a)a. Note that z < 1, and if x < 1, then
1/x=1/(1/a)a = (1/a)/(1/a) = 1, cancellativity; so x = 1.

The negative coneofa RL A = (A, A,V, -, \,/,1) is the RL
A== (A AV, N\ /A 1), where A= ={a e A:a <1},
a\* b= (a\b)Aland b/A2 a = (b/a) A 1.

Undecidability

References




ldempotent rep. atoms
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Representable RLs
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Representable RLs
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It is a subdirect product of totally ordered RLs. RRL denotes
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Representable RLs

A residuated lattice is called representable (or semi-linear) if
It is a subdirect product of totally ordered RLs. RRL denotes
the class of representable RLSs.

Recall that a totally ordered RL satisfies the first-order
formula (Vz,y)(z <yory <z) [(Vz,y)(1 < z\yorl < y\x)]

Representable Heyting algebras form a variety axiomatized
byl=(x—y)V (y — x).
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A residuated lattice is called representable (or semi-linear) if e
it is a subdirect product of totally ordered RLs. RRL denotes
the class of representable RLSs.
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by 1= (z—y)V(y — ). e
Representable commutative RLs form a variety axiomatized pometzaton
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The meet of two varieties in A(RL,) is their intersection.

Also, if V; Is axiomatized by F; and V5 by E5, then V; A Vs IS
axiomatized by F; U Es.

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)
Representable RLs
Finite basis

FSI

PUF’s

PUF and equations
Axiomatization

RRL

Finite axiomatization

Elementarity
Applications

Logic

Representation - Frames

Applications of frames

Undecidability

References




Joins

The meet of two varieties in A(RL,) is their intersection. e

Also, if V; Is axiomatized by F; and V5 by E5, then V; A Vs IS RL examples
aX|Omatlzed by El U E2- Congruences

On the other hand, the join of two varieties is the variety S e Eons
generated by their union. e ———
Also, if V; Is axiomatized by F; and Vs by E5, then V; V Vs Finie basis

may not be axiomatized by E; N Es. e

PUF and equations
Axiomatization

RRL

Finite axiomatization
Elementarity
Applications

Logic

Representation - Frames

Applications of frames

Undecidability

References




Joins

The meet of two varieties in A(RL,) is their intersection. e

Also, if V; Is axiomatized by F; and V5 by E5, then V; A Vs IS RL examples
aX|Omatlzed by El U E2- Congruences

On the other hand, the join of two varieties is the variety S e Eons
generated by their union. e ———
Also, if V; Is axiomatized by F; and Vs by E5, then V; V Vs Finie basis
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Also, if V; Is axiomatized by F; and V5 by E5, then V; A Vs IS RL examples
aX|Omatlzed by El U EQ. Congruences
On the other hand, the join of two varieties is the variety S e Eons
generated by their union. e ———
Also, if V; Is axiomatized by F; and Vs by E5, then V; V Vs —
may not be axiomatized by E; N E,. e
PUF and equations
Axiomatization
G Oal S :jiii:e axiomatization
Elementarity
= Find an axiomatization of V; V V5 in terms of £ and Es. Aoplcatons
Logic
= Find situations where: if £; and E5 are finite, then V; V Vs Representation - Frames
IS flnltely aXIOmatIZEd Applications of frames

Undecidability
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Finite basis

If V is a congruence distributive variety of finite type and
Vg Is strictly elementary, then V is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence.
Finitely SI: A is not the intersection of two non-trivial

congruences.
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Finite basis

If V is a congruence distributive variety of finite type and
Vrsy IS strictly elementary, then V is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence.
Finitely SI: A is not the intersection of two non-trivial

congruences.

Cor. For every variety V of RLs, If Vpg; IS strictly elementary,
then the finitely axiomatized subvarieties of V form a lattice.

Pf. For finitely axiomatized subvarieties V1, Vs,
(V1 Vo) rsr = (V1 U Vy) pgy is strictly elementary.
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Finite basis

If V is a congruence distributive variety of finite type and
Vrsy IS strictly elementary, then V is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence.
Finitely SI: A is not the intersection of two non-trivial
congruences.

Cor. For every variety V of RLS, If Vg7 IS strictly elementary,
then the finitely axiomatized subvarieties of V form a lattice.
Pf. For finitely axiomatized subvarieties Vi, Vs,

(V1 V Va)rsr = (V1 UVs) gy IS strictly elementary.

Let V1, Vs be subvarieties of RL axiomatized by F;, Es,
respectively, where E;, E> have no variables in common.
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Finite basis

If V is a congruence distributive variety of finite type and
Vrsy IS strictly elementary, then V is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence.
Finitely SI: A is not the intersection of two non-trivial
congruences.

Cor. For every variety V of RLS, If Vg7 IS strictly elementary,
then the finitely axiomatized subvarieties of V form a lattice.

Pf. For finitely axiomatized subvarieties V, Vs,
(V1 Vo) rsr = (V1 U Vy) pgy is strictly elementary.

Let V1, Vs be subvarieties of RL axiomatized by F;, Es,
respectively, where E;, E> have no variables in common.

The class V; UV, is axiomatized by the universal closure of
(AND E7) or (AND Es), over infinitary logic, which is equivalent
to the set {WW(ey ores) : &1 € Fq,e4 € Ey} of positive
universal first-order formulas (PUFS).
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FSI

In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = ~(a) VvV v/(b), for all all iterrated
conjugates ~, v/, thena =1or b = 1.
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In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = ~(a) VvV v/(b), for all all iterrated
conjugates ~, v/, thena =1or b = 1.

Thm. A RL is FSI iff 1 is weakly join-irreducible.

(<) Let F, G be CNS with FNG = {1}. Forall a € F~ and
be G—,1=~(a)V~(b),for all iterated conjugates,
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In a RL, we say that 1 is weakly join irreducible, if for all e
negative a, b, whenever 1 = ~(a) VvV v/(b), for all all iterrated
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In a RL, we say that 1 is weakly join irreducible, if for all e
negative a, b, whenever 1 = ~(a) VvV v/(b), for all all iterrated
conjugates ~, v/, thena =1or b = 1.
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Thm. A RL is FSIiff 1 is weakly join-irreducible. e
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In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = ~(a) VvV v/(b), for all all iterrated
conjugates ~, v/, thena =1or b = 1.

Thm. A RL is FSI iff 1 is weakly join-irreducible.

(<) Let F,G be CNS with FNG ={1}. Foralla € F~ and
be G—,1=~(a)V~(b),for all iterated conjugates, because
if v(a),y(b) <u,thenuANle FNG={1},s01 <wu. Since 1
Is weakly join-irreducible, a =1 orb = 1.

(=) Let a, b be negative elements and assume that

u e CNS~(a) NCNS~(b). Then there exist products of
iterated conjugates p, q of a, b, resp., such that p,q < u. If
1 =~(a) Vv (b), for all iterated conjugates,
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FSI

In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = ~(a) VvV v/(b), for all all iterrated
conjugates ~, v/, thena =1or b = 1.

Thm. A RL is FSI iff 1 is weakly join-irreducible.

(<) Let F, G be CNS with FNG = {1}. Forall a € F~ and
be G—,1=~(a)V~(b),for all iterated conjugates, because
if v(a),y(b) <u,thenuANle FNG={1},s01 <wu. Since 1
IS weakly join-irreducible, a =1 orb = 1.

(=) Let a, b be negative elements and assume that

u e CNS~(a) NCNS~(b). Then there exist products of
iterated conjugates p, q of a, b, resp., such that p,q < u. If
1 =~(a) V~'(b), for all iterated conjugates, then1 =pV q.
Thus,u =1and CNS~(a) NCNS~(b) = {1}.

Since AisFSI,CNS~(a) ={1} or CNS~(b) = {1}, hence
a=1o0fb=1.
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PUF’s

Every PUF is equivalent to (the universal closure of) a e
disjunction of conjunctions of equations.
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PUF's

Every PUF is equivalent to (the universal closure of) a
disjunction of conjunctions of equations.

s=tiff (s <tandt <s)iff (1 <s\tand1 <t\s).

Every conjunction of equations 1 < p; is equivalanent to the
equation 1 < p; A --- A p,.

So, every PUF is equivalent to a formula of the form

a=VT (1<ryor---orl <ryg)

Let&() be (7“1)/\1 VARV (Tk)/\l = 1.

Also, for m > 0 and X, fresh variables Y, we define «,,, as
the set of all equations of the form

MV V=1
where v, € I'{*(r;) foreach i € {1,...,k}. Seta =/

new

Here I'{(a) = {my, my, - -+ my,, (an1) | 4 € Y,y € {Ay;, 0y, }}-

Qi -
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Axiomatization

Thm. Let K be a class of RLs axiomatixed by a set ¥ of PUF. e
Then V(K) is axiomatized, relative to RL, by V.
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Pf. Let A € RLg;. By congruence distributivity and Jonsson’s o
Lemma, A € V(K) iff A € HSPy(K). Furthermore, as PUFs S

are preserved under H, S and Py, A € HSPy(K) iff A € K. epesena s
Finally, A ¢ K iff A = Uiff A |= V. P b
Let V1, V> be subvarieties of RL axiomatized by F, E», Ut sions
respectively, where F;, E5 have no variables in common. RRL
The class V; UV, is axiomatized by the set of PUFs clemertary
U={W(1l<riol<r)|(l1<r)€E,(l<r)c b}
Thm. V; V Vs Is axiomatized by Representation - Frames
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Thm. The variety RRL generated by all totally ordered e
residuated lattices is axiomatized by the 4-variable identity

A (2 Vy)\z) V pu((z Vy)\y) = 1.
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Thm. The variety RRL generated by all totally ordered e
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RRL

Thm. The variety RRL generated by all totally ordered
residuated lattices is axiomatized by the 4-variable identity

A (2 Vy)\z) V pu((z Vy)\y) = 1.
Pf. ARL is a chain iff it satisfies Vz,y(x <y ory < x), or

Va,y(1 < (z Vy)\zorl < (zVy)\y).

Thus, RRL is axiomatized by the identities

1 =v((zVy\z)Vy2(lzVy\y); 11,72 €T @)

So, RRL satisfies the identity
A((z Vy)\z) Vpu((z Vy)\y) = 1. (A, p)
Conversely, the variety axiomatized by this identity satisfies
zVy=1= X (x)Vy =1 zVy=1= xVpy,(y) =1. (imp)

By repeated applications of (imp) on (A, p), we get (I').
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Finite axiomatization

Let 3 =Va1Vas (1 <z10rl < z9)andsetB,, = Bpi1 =

Va1 Voo [(VT Yz AND By, ) = (V7 Vz AND SBimi1)]

Thm. Let V; and V, be two varieties of RLs that satisfy
By, = Bp,11. Then

1. V1 V Vs is axiomatized by \Tfm + a finite set of equations.
2. If V; and V), are finitely axiomatized then so is V; V Vs
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Finite axiomatization

Let 3 =Va1Vas (1 <z10rl < z9)andsetB,, = Bpi1 =

Va1 Voo [(VT Yz AND By, ) = (V7 Vz AND SBimi1)]

Thm. Let V; and Vs, be two varieties of RLs that satisfy
By, = Bp,11. Then

1. V1 V Vs is axiomatized by \Tfm + a finite set of equations.
2. If V; and V), are finitely axiomatized then so is V; V Vs

Pf. By congruence distributivity (V; V Vo)psr € Vi U Vs, SO
(V1 V Vs)pgy satisfies B,, = B,,11. V1 V Vs> also satisfies
B,, = B,,.1, because the latter is a special Horn sentence
(Lyndon) and is preserved under subdirect products.

By compactness of FOL, B,, = B,,11 IS a consequence of a
finite set B of equations, valid in V; V V.

Note that V; V Vg IS axiomatized by ¥ and, using
B, = B, \If Implies \If for all n > m.
Hence, V; V Vs Is axiomatized by \I!m U B.
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Thm. For any variety V of RLs, Vrg; IS an elementary class e
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Thm. For any variety V of RLs, Vrg; is an elementary class e

Iff it satisfies B,,, = B,,+1 for some m. e
Congruences
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A Hilbert-style axiomatization

(MP)
(B)
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(1)
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(DRDb)
(DL)
(PR)
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(UP)
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FaL, (@ — ¢) = [(¥ — x) = (¢ — X))
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FHL, ¢ — ¢

10, ¥} FaL, @AY

FHL, (P AY) — ¢
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FaL, Y — (¢ VY)

FaL, (0= X) AW — X)) = (9 V) — x
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Substructural logics

The system HL has the following inference rules:

¢ P\ ¢ ¥ 9

s
o MR gy G gy

meymial

(pn)

We write ® gy, 1, If the formula ) is provable in HL from
the set of formulas ®.

We do not allow substitution instances of formulas in ®.

For example, p, p\q /uL .
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Substructural logics

The system HL has the following inference rules:

¢ P\ ¢ ¥ 9

s
o MR gy G gy

Pr) Se/u

(pn)

We write ® gy, 1, If the formula ) is provable in HL from
the set of formulas ®.

We do not allow substitution instances of formulas in ®.

For example, p, p\q /uL .

A set of formulas is called a substructural logic if it is closed
under g1, and substitution.
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Substructural logics

The system HL has the following inference rules:

¢ P\ ¢ ¥ 9

s
o MR gy G gy

Pr) Se/u

(pn)

We write ® gy, 1, If the formula ) is provable in HL from
the set of formulas ®.

We do not allow substitution instances of formulas in ®.

For example, p, p\q /uL .

A set of formulas is called a substructural logic if it is closed
under g1, and substitution.

Substructural logics form a lattice SL.
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Substructural logics

The system HL has the following inference rules:

¢ P\ ¢ ¥ 9

s
o MR gy G gy

Pr) Se/u

(pn)

We write ® gy, 1, If the formula ) is provable in HL from
the set of formulas ®.

We do not allow substitution instances of formulas in ®.

For example, p, p\q /uL .

A set of formulas is called a substructural logic if it is closed
under g1, and substitution.

Substructural logics form a lattice SL.

In the following we identify (propositional) formulas over
{A,V,-,\,/, 1} with terms over the same signature.
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Algebraic semantics

For a set of equations E U {s = t}, we write Tie
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Algebraic semantics

For a set of equations £ U {s = t}, we write

E):RLSZt

If for every residuated lattice L € RL and for every
homomorphism f : Fm — L,

f(u) = f(v), forall (u =v) € E, implies f(s) = f(t).

Theorem. The consequence relation gy, IS algebraizable,
with RL as an equivalent algebraic semantics:
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Algebraic semantics

For a set of equations £ U {s = t}, we write

E):RLS:t

If for every residuated lattice L € RL and for every
homomorphism f : Fm — L,

f(u) = f(v), forall (u =v) € E, implies f(s) = f(t).

Theorem. The consequence relation gy, IS algebraizable,
with RL as an equivalent algebraic semantics:

1. if ® U {¢} is a set of formulas, then
O by Y iff {1 < ¢lp € D} E=rL 1 < 9, and
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Algebraic semantics

For a set of equations E U {s = t}, we write e
E ):RL g = t RL examples
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homomorphism f : Fm — L, Subvarietylttce (oing)
f(u) = f(v), forall (u =v) € E, implies f(s) = f(t). s
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2. if EU{t = s} is a set of equations, then
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Algebraic semantics

For a set of equations £ U {s = t}, we write e
E ):RL g = t RL examples
Congruences
If for every residuated lattice L. € RL and for every Subvariety latice (atoms)
homomorphism f : Fm — L, Subvarietylttce (oing)
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2. if EU{t = s} is a set of equations, then
E gLt =siff {u\v Av\u|(u =v) € E} Fgr t\s A s\t.
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Algebraic semantics

For a set of equations £ U {s = t}, we write e
E ):RL g = t RL examples
Congruences
If for every residuated lattice L. € RL and for every Subvariety latice (atoms)
homomorphism f : Fm — L, Subvarietylttce (oing)
f(u) = f(v), forall (u =v) € E, implies f(s) = f(t). s
A Hilbert system
0 - . Substructural logics
Theorem. The consequence relation -y, IS algebraizable,
. . . . ubstructural logics (examples
with RL as an equivalent algebraic semantics: e s (rampien
PLDT
1. if ®U {y} is a set of formulas, then Applcations o logie
@ l_HL w Iﬂ: {1 S ¢|¢ c @} }:RL 1 S w’ and Representation - Frames

Applications of frames

2. if EU{t = s} is a set of equations, then
E gLt =siff {u\v Av\u|(u =v) € E} Fgr t\s A s\t.

3. s=t=FRr. 1 <t\sAs\t
4. ¢ AL IN(1A Q) A (@ A1)\
Theorem. SL and A(RL) are dually isomorphic.
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Substructural logics (examples)

Note that HL does not admit e
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Substructural logics (examples)

Note that HL does not admit e
© [—@—2——(@—2)] (y=y)
K) y—(z—vy) (z <1)
W) [z—(z—y)]—(r—y) (x < 2?%) Subvarityltice atoms)

Subvariety lattice (joins)

Examples of substructural logics include

Logic
A Hilbert system

= classical: (C)+(K)+(W)+ ——¢ = ¢ (DN) subsiucual g

= |ntuitionistic (Brouwer, Heyting): (C)+(K)+(W)

= many-valued (Lukasiewicz): (C)+(K)+ o tone o o
(=) =b=0VY

= bpasic (Hajek): (C)+(K)+ ¢(¢p — ) = d AW T

s MTL (Esteva, Godo): (C)+(K)+ (¢ — ¥) V (¢ — ¢) Undecidabiity

= relevance (Anderson, Belnap): (C)+(W)+ Distrib. (+ DN) References

= (MA)linear logic (Girard): (C)



Substructural logics (examples)

Relevance logic deals with relevance.

p — (q — ¢q) is not a theorem.

The algebraic models do not satisfy integrality « < 1.

p — (—p — q) [or (p- —p) — q] is not a theorem, where
—-p = p — 0. The algebraic models do not satisfy 0 < x.

Commutativity and distributivity are OK, so we get involutive
CDRL (they satisfy ——x = x).
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Relevance logic deals with relevance. e
p — (¢ — q) is not a theorem.

RL examples
The algebraic models do not satisfy integrality = < 1. Cgp
p — (-p — q) [or (p- —p) — q] is not a theorem, where e s,
—p = p — 0. The algebraic models do not satisfy 0 < =. it s
Commutativity and distributivity are OK, so we get involutive Loge
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Substructural logics (examples)

Relevance logic deals with relevance.

p — (¢ — q) is not a theorem.
The algebraic models do not satisfy integrality « < 1.

p — (=p — q) [or (p- —p) — ¢] is not a theorem, where
—p = p — 0. The algebraic models do not satisfy 0 < x.

Commutativity and distributivity are OK, so we get involutive
CDRL (they satisfy ——x = x).

Intuitionistic logic deals with provability or constructibility.
The algebraic models are Heyting algebras.

Many-valued logic allows different degrees of truth.
[(p A q) — 7] < [p— (¢ — r)] is not a theorem.
The algebraic models do not satisfy x Ay =z - y.
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Substructural logics (examples)

Relevance logic deals with relevance.

p — (q — q) is not a theorem.
The algebraic models do not satisfy integrality + < 1.

p — (=p — q) [or (p- —p) — ¢] is not a theorem, where
—p = p — 0. The algebraic models do not satisfy 0 < x.

Commutativity and distributivity are OK, so we get involutive
CDRL (they satisfy ——x = x).

Intuitionistic logic deals with provability or constructibility.
The algebraic models are Heyting algebras.

Many-valued logic allows different degrees of truth.
[(p A q) — 7] < [p— (¢ — r)] is not a theorem.
The algebraic models do not satisfy x Ay = x - y.

Linear logic is resourse sensitive. p — (p — p) [or (p - p) — p]

and p — (p - p) are not theorems.
The algebraic models do not satisfy contraction x < z?2.
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PLDT

The deduction theorem for CPL states:
X, tepr o Wt Xkoprp — @
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PLDT

The deduction theorem for CPL states:
X, tepr o Wt Xkoprp — @

Theorem. LetX UV U {¢} C FFm, and L be a logic.

= |f L IS commutative, integral and contractive, then

S, Uk ¢ iff ShL (AL ¢:) — 9,
forsome n € w,and ¥; € ¥, i < n.
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PLDT

The deduction theorem for CPL states:
X, tepr o Wt Xkoprp — @

Theorem. LetX UV U {¢} C FFm, and L be a logic.

= |f L IS commutative, integral and contractive, then

S, Uk ¢ iff ShL (AL ¢:) — 9,
forsome n € w,and ¥; € ¥, i < n.

= |f L is commutative and integral, then

Y, Uk ¢ iff Shn (T, %) — ¢,
for some n € w,and y; € ¥, 1 < n.
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The deduction theorem for CPL states: e
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Theorem. LetX UV U {¢} C Fm, and L be a logic.
= |f L IS commutative, integral and contractive, then

Subvariety lattice (atoms)

Subvariety lattice (joins)

E7 \Ij |_L ¢ Iﬂ: E l_L (/\:L:l wl) — ¢’ Logic
for some n € w,and ¥; € U, i < n. e
= If L is commutative and integral, then S
E, \Ij l_L ¢ I.I:f E '_L (H?:l wz) N ¢’ ructural logics (examples)
forsome n € w,and y; € ¥, i < n. Applications to logie
. . Representation - Frames
= If L is commutative, then p

E, \D '_L ¢ |ff Z l—L (H:”:l(wz A 1)) _ . ¢’ Applic%tion.slofframes
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PLDT

The deduction theorem for CPL states:

Theorem. LetX UV U {¢} C Fm, and L be a logic.

X, Fepr ¢ Iff Xreoprp— ¢

If L Is commutative, integral and contractive, then

2, Uk ¢ iff Sk (Al ¥i) — ¢,
for some n € w,and y; € ¥, 1 < n.

If L Is commutative and integral, then

2,0k ¢ iff Tk ([T, i) — ¢,
forsome n € w,and y; € ¥, i < n.

If L is commutative, then

S, Wky ¢ iff Shp (L2 (Wi A1) — ¢,
for some n € w,and y; € ¥, 1 < n.

If L Is any substructural logic, then
5,k ¢ iff Yk ([Tio; %(¥:)\o,

for some n € w, iterated conjugates v; and v; € ¥, 1 < n.
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Applications to logic

= Hilbert systems (Algebraization) Tite

Outline

= PLDT (Congruence generation for RLS) SR
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Applications to logic

= Hilbert systems (Algebraization) e
= PLDT (Congruence generation for RLS) RL examples
= Maximal consistent logics (Atoms in A(RL)) Congruences
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= Axiomatizing intersections of logics (Joins in A(RL))

Subvariety lattice (joins)

= Translations (Glivenko, Kolmogorov) between logics, e.g.,
o . Logic
Fopr ¢ iff Fr,: =@ (Structure of A(RL) and nuclei) A Hibert system
Substructural logics
- Alget:raict semar?tics
AI g e b ra PAEEN LO g | C Substructural logics (examples)
Substructural logics (examples)
congruence generation <« PLDT e .
congruence extension <« localDT Represeniation Frames
EDPC <« deduction theorem Applications of frames
subreduct axiomatization <« strong seperation (Hilbert) ndecidabily
decid. equational th. « decid. provability (Gentzen) | ~—
finite generation <« cut elimination (+ fin. proof)
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Lattice frames

A lattice frame is a structure W = (W, W', N) where W and e
W' are sets and N is a binary relation from W to W”'.
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Lattice frames

A lattice frame is a structure W = (W, W', N) where W and e
W' are sets and N is a binary relation from W to W”'.

RL examples

If L is a lattice, W, = (L, L, <) is a lattice frame. Congruences

For X g W and Y g W/ We deflne Subvariety lattice (atoms)
Xt={beW .z Nb foralze X}
Y9={aeW:a Ny, foralyecY}
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Lattice frames

A lattice frame is a structure W = (W, W'’ N) where W and
W' are sets and N is a binary relation from W to W”'.

If L is a lattice, Wy, = (L, L, <) is a lattice frame.

For X C W and Y C W’ we define
XP={beW' :x Nb foralxec X}
Y9={aeW:a Ny, foralyecY}

The maps *: P(W) — P(W’')and <: P(W') — P(W) form a
Galois connection. The map vy : P(W) — P(W), where
v (X) = XP9, is a closure operator.
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Lattice frames

A lattice frame is a structure W = (W, W', N) where W and
W' are sets and N is a binary relation from W to W”'.

If L is a lattice, Wy, = (L, L, <) is a lattice frame.

For X C W and Y C W’ we define
XP={beW' :x Nb foralxec X}
Y9={aeW:a Ny, foralyecY}

The maps *: P(W) — P(W’')and <: P(W') — P(W) form a
Galois connection. The map vy : P(W) — P(W), where
v (X) = XP9, is a closure operator.

Lemma. If L = (L, A, V) is a lattice and ~ is a cl.op. on L,
then (y[L], A, V) is a lattice. [z V., y = y(z V y).]
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Lattice frames

A lattice frame is a structure W = (W, W', N) where W and
W' are sets and N is a binary relation from W to W”'.

If L is a lattice, Wy, = (L, L, <) is a lattice frame.

For X C W and Y C W’ we define
XP={beW' :x Nb foralxec X}
Y9={aeW:a Ny, foralyecY}

The maps *: P(W) — P(W’')and <: P(W') — P(W) form a
Galois connection. The map vy : P(W) — P(W), where
v (X) = XP9, is a closure operator.

Lemma. If L = (L, A, V) is a lattice and ~ is a cl.op. on L,
then (y[L], A, V) is a lattice. [z V., y = y(z V y).]

Corollary. If W is a lattice frame then the Galois algebra
W = (yn[P(W)],N,U,, ) is a complete lattice.
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Lattice frames

A lattice frame is a structure W = (W, W', N) where W and
W' are sets and N is a binary relation from W to W”'.

If L is a lattice, Wy, = (L, L, <) is a lattice frame.

For X C W and Y C W’ we define
XP={beW' :x Nb foralxec X}
Y9={aeW:a Ny, foralyecY}

The maps ®: P(W) — P(W')and <: P(W') — P(W) form a
Galois connection. The map vy : P(W) — P(W), where
v (X) = XP9, is a closure operator.

Lemma. If L = (L, A, V) is a lattice and ~ is a cl.op. on L,
then (y[L], A, V) is a lattice. [z V., y = y(z V y).]

Corollary. If W is a lattice frame then the Galois algebra
W = (yn[P(W)],N,U,, ) is a complete lattice.

If L is a lattice, W is the Dedekind-MacNeille completion of
L and x — {z}< is an embedding.
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Residuated frames

A residuated frame is a structure W = (W, W', N,o,1) where =~ ™
W and W' aresets N C W x W', (W,o,1) is a monoid and
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Residuated frames
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Residuated frames

A residuated frame is a structure W = (W, W', N,o,1) where =~ ™
W and W’ are sets N C W x W', (W,0,1) is a monoid and
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Residuated frames

A residuated frame is a structure W = (W, W', N,o,1) where =~ ™
W and W' aresets N C W x W', (W, o,1) is a monoid and

forall z,y € W and w € W’ there exist subsets
z \ w,w // y € W'such that
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Residuated frames

A residuated frame is a structure W = (W, W', N,o,1) where =~ ™
W and W' aresets N C W x W', (W, o,1) is a monoid and

forall z,y € W and w € W’ there exist subsets
z \ w,w // y € W'such that
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L such that v(z)7(y) < v(zy) (or v(v(z)v(y)) = v(zy)).
Theorem. GivenaRLL = (L,A,V,-,\,/,1) and a nucleus e b
on L, the algebra L, = (L, A, V4, \,/,7(1)), is a o o e
residuated lattice, where x -, y =v(z - y), x V, y = y(z V y). Proot

Applications of frames

Theorem. If W is a frame, then vy IS a nucleus on
P(W,o,{1}).
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Residuated frames

A residuated frame is a structure W = (W, W' N, o, 1) where
W and W' aresets N C W x W', (W, o,1) is a monoid and
forall z,y € W and w € W’ there exist subsets

z \ w,w // y € W'such that

(xoy) Nw & y N (z\w) & N (w/y)
If LisaRL, Wi, = (L,L,<,-,{1}) is aresiduated frame.
A nucleus v on a residuated lattice L is a closure operator on

L such that y(z)y(y) < v(zy) (or y(v(z)v(y)) = v(zy))-

Theorem. GivenaRLL = (L,A,V,-,\,/,1) and a nucleus
on L, the algebra L, = (L, A, V4, \,/,7(1)), is a
residuated lattice, where x -, y =v(z - y), x V, y = y(z V y).

Theorem. If W is a frame, then vy IS a nucleus on
P(W,o,{1}).

Corollary. If W is a residuated frame then the Galois
algebra W+ = P(WW, 0, 1), is a residuated lattice. Moreover,
for W, z — {z}< is an embedding.
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Formula hierarchy

" POIarity {\/7 K 1}’ {/\7 \’ /} (T)T:ine

= The sets P,,, N,, of formulas are defined by: & eampes
K K (0) Py = Ny = the set of variables Congruences

(Pl) Nn g Pn 11 Subvariety lattice (atoms)

; . (P2 ,BEPu1 = aVha-B,1€P,y; sy
Ps N3 (Nl) Pn Q Nn_|_1 Logic

(N2) Q, 6 < Nn+1 = a 5 < Nn—|—1 Representation - Frames
T >< I (N3) a € Pra1, B E N1 = a\B,8/a € Ny ;s
P2 Noo m Pt = (NI Not1 = (Pr) A Pasa\s/Pott s ssmcumtonee
T >< I * P C Payt, N C Nog1, UPn = UN, = Fm Sccinion

s Pi-reduced: \/ ] p; Gentzen faes

P1 N1

T >< I Nl'reduced. /\(plp2 . o -pn\’r'/qqu o o e qm) Applications of frames

P() NO P1P2 - Pnq142 - - - qdm S T References

m Sequent: ai,as9,...,a, = ag
(r = a,a € Fm, x € F'm”*)



FL

I=a Yoaoz=C

yozor=c  (Cut) 5= (Id)
= boz=
yoaoz=-Cc (ALY) yoboz=-c (AL7) r=a x=0b (AR)
yoa N\ boz=>c yoa N\ boz=>c xr=a N\ b
yoaoz=-c yoboz=-—c r=a x=0b
yoa V boz=c (VL) xr=a Vb (VRE) r=a Vb (VRr)

r=a Yyoboz=c
yox o (a\b)oz=-c

aox=b
(D) LI (R

r=a Yoboz=rc

(L  Lea=b R

yo(b/a) o xoz=-c r=b/a
yoa o boz=-c r=a Yy=>b
yoa - boz=-c (b roy=a-b (R)

Y o zZ=a
yoloz=-a

(1L) =1 (1R)

where a,b,c € F'm, z,y,z € Fm™.
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FL

(1d)

ulx]|=c a=a
ula]=c ulb]=c r=a__x=b
ula A bl=-c (AL ula A bl=-c (ALr) r=a A\b (AR)

ulal]=c wulbl]=-c

= =b
ula V b|=c (VL) ZC;I;CL il/ b (VRO) xia V' b (VRr)
r=a ulbl=rc ey =
ulx o (a\b)|=-c (b r=-a\b (\R)
r=a ulb]=c T o a=b
L R
u[(b/a) o x]=-c V) r=b/a UR)
ula o bj]=-c r=a Y=b
ula - bj=c (b roy=a-b (R)
lu|=a m
u[l]l=a (1) =1 (1R)
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S, ™=
we write S g, s.
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S, Tide

Outline
we write S gy, s. RLtexamp.es
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S, ™=
we write S g, s.
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S,
we write S Fgg, s.

u[z oyl = ¢ (@
uly o x| = c ‘ (exchange) zy < yx
ulx ox| = c (©
ulzr] = c “ (contraction) z < 2
lu| = ¢ (0
ulx] = ¢ ' (integrality) x <1
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S,
we write S Fgg, s.

u[z oyl = ¢ (@
uly o x| = c ‘ (exchange) zy < yx
ulx ox| = c (©
ulzr] = c “ (contraction) z < 2
u| = ¢ (0
ulx] = ¢ ' (integrality) x <1

We write FL¢. for FL + (e) + (¢).
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S,
we write S Fgg, s.

u[z oyl = ¢ (@
uly o x| = c ‘ (exchange) zy < yx
ulx ox| = c (©
ulzr] = c “ (contraction) z < 2
u| = ¢ (0
ulx] = ¢ ' (integrality) x <1

We write FL¢. for FL + (e) + (¢).

Theorem. The systems HL and FL are equivalent via the
maps s(v) = ( = v¢) and
o(ar,ag,...,an = a) =ap\(...(a2\(a1\a))...);
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Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus). Tite
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Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).

We define the frame Wgg,, where
= (W, 0,¢) to be the free monoid over the set F'm of all

formulas
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Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus). e
We define the frame Wgr,, where RL examples
= (W,0,¢) to be the free monoid over the set F'm of all S
Subvariety lattice (atoms)
formulas ty

Subvariety lattice (joins)

= W' = Sy x Fm, where Sy is the set of all unary linear
polynomials u[z] = yoxoz of W, and

= ¢ N (u,a) iff Fpr, ulz] = a.
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Examples of frames (FEP)

Let A be aresiduated lattice and B a partial subalgebra of A. e
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We define the frame W4 g, where RL examples

= (W,-,1) to be the submonoid of A generated by B, s

» V' = Sg x B, where Sy is the set of all unary linear
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Gentzen frames

The following properties hold for W,, W1, and Wy g: Tie
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Gentzen frames

The following properties hold for W,, W1, and Wy g:

1. W is a residuated frame

. B is a (partial) algebra of the same type, (B = L, Fm, B)
. B generates (W, o, ¢) (as a monoid)

W' contains a copy of B (b < (id, b))

N satisfies GN, foralla,b € B, x,y €¢ W, z € W’'.

g R W N

We call such pairs (W, B) Gentzen frames.

A cut-free Gentzen frame is not assumed to satisfy the
(CUT)-rule.
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Gentzen frames

The following properties hold for Wy,, Wgr, and Wa g: e
1. W is a residuated frame RL examples
2. B is a (partial) algebra of the same type, (B = L, Fm, B) SIS
Subvariety lattice (atoms)
3. B generates (W, o,¢) (as a monoid) bty e (o
4. W' contains a copy of B (b < (id, b)) Logic
5. N satisfies GN, for all a,b € B, z,y e W, z € W’. Representalon  Frames
Residuated frames
Formula hierarchy
We call such pairs (W, B) Gentzen frames. e commrsetraloges
A cut-free Gentzen frame is not assumed to satisfy the crampies o s (£9)
(CUT)-rule .
:
Proof
Theorem. Given a Gentzen frame (W, B), the map St e v
{}9:B - W, b— {b}<is a (partial) homomorphism.
(Namely, if a,b € B and a e b € B (e is a connective) then s

{a e b}~ = {a}~ ew+ {b}7).
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Key Lemma. Let (W, B) be a Gentzen frame. For all e
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RL examples

Congruences

Subvariety lattice (atoms)

2. In particular, a eg b € {a}< oyy+ {b}< C {a e b}~. Subvariety latice (oing)
3. Furthermore, because of (CUT), we have equality. o

Representation - Frames
Proof Lete = V. Ifz € X, thenz € {a}Y; so xNa and s
rzNa Vb, by (VR); hence x € {aVvb}<and X C {aVb}T. Ry
Likewise Y C {aVb}<,s0 X UY C {aVb}< and St sl s
X \/ Y = ’}/(X U Y) g {a \/ b}<] Examples of frames (FEP)

en frames

Applications of frames

Undecidability

References




Proof

Key Lemma. Let (W, B) be a Gentzen frame. For all e
a,b € B, k,l €¢ WT and for every connective o, ifa @b € B,
a€ X C{a}YandbeY C {b}, then

l.aegbe X oyw+ Y C{aegb}d (1p € 1w+ C {1p}~)

RL examples

Congruences

Subvariety lattice (atoms)

2. In particular, a eg b € {a}< oyy+ {b}< C {a e b}~. Subvariety latice (oing)
3. Furthermore, because of (CUT), we have equality. Logic

Proof Lete = V. If z € X, then z € {a}<; so xNa and acefanes
xNa Vb, by (VR); hence x € {aVvb}<and X C {aV b}~. Formi erarcy
Likewise Y C {aVb}<,s0 X UY C {aVb}< and ORI
X \/ Y = /7(X U Y) g {CL \/ b}<] Examples of frames (FEP)

GN
Gentzen frames

On the other hand, let X VY C {z}, for some z € W. Then,
a € X CXVY C{z}9,s0aNz. Similarly, bNz, so aV bNz Applications o rames
by (VL), hence a Vb e {Z}<]. Thus,avbe X VY. Undecidability
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We used that every closed set is an intersection of basic
closed sets {2z}, for z € W.



Applications of frames
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DM-completion

For a residuated lattice L, we associated the Gentzen frame
(WIn L) .
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DM-completion

For a residuated lattice L, we associated the Gentzen frame
(WIn L)

The underlying poset of W is the Dedekind-MacNeille
completion of the underlying poset reduct of L.

Theorem. The map z — z< is an embedding of L into W7 .
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Completeness - Cut elimination

For every homomorphism f : Fm — B, let f:Fmy, - W+
be the homomorphism that extends f(p) = {f(p)}< (p:

variable.)
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Completeness - Cut elimination
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Completeness - Cut elimination

For every homomorphism f : Fm — B, let f : Fm, — W+ e

be the homomorphism that extends f(p) = {f(p)}< (p: S
variable.) S
Corollary. If (W, B) is a cf Gentzen frame, for every Subvariety latie (atoms)
homomorphism f : Fm — B, we have f(a) € f(a) C| f(a). Subvareyltice oins)

If we have (CUT), then f(a) = f(a). Loge

We define Wgy, Ex = cby f(z) N f(c), for all f. e
Theorem. If W;EL =z <c, then WgL, EFz = c. immanon
Idea: For f : Fm — B, f(z) € f(z) C f(c) C {f(c)}<, so i

f(z) N f(c). e
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Completeness - Cut elimination

For every homomorphism f : Fm — B, let f:Fmy, - W+
be the homomorphism that extends f(p) = {f(p)}< (p:
variable.)

Corollary. If (W, B) is a cf Gentzen frame, for every
homomorphism f : Fm — B, we have f(a) € f(a) C| f(a).
If we have (CUT), then f(a) = f(a).

We define Wgyr, =x = cby f(z) N f(c), forall f.

Theorem. If Wi, E 2 < ¢, then Wgr, E 2 = c.

Idea: For f : Fm — B, f(z) € f(z) C f(c) C{f(c)}¥, so
f(x) N f(e).

Corollary. FL is complete with respect to W .
Corollary. The algebra Wi, generates RL.
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Completeness - Cut elimination

For every homomorphism f : Fm — B, let f:Fmy, — WT
be the homomorphism that extends f(p) = {f(p)}< (p:
variable.)

Corollary. If (W, B) is a cf Gentzen frame, for every
homomorphism f : Fm — B, we have f(a) € f(a) C| f(a).
If we have (CUT), then f(a) = f(a).

We define Wgyr, =x = cby f(z) N f(c), forall f.

Theorem. If Wi, E 2 < ¢, then Wgr, E 2 = c.

Idea: For f : Fm — B, f(z) € f(x) C f(c) C {f(c)}7, so
f(z) N f(c).

Corollary. FL is complete with respect to W .
Corollary. The algebra Wi, generates RL.

The frame Wgyp e corresponds to cut-free FL.

Corollary (CE). FL and FL! prove the same sequents.

Corollary. FL and the equational theory of RL are decidable.
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Finite model property

For Wgr, given (z,z) € W x W' (if z = (u, ¢), then u(z) = ¢
is a sequent), we define (z, 2)! as the smallest subset of

W x W' that contains (x, z) and is closed upwards with
respect to the rules of FL. Note that (z, 2)! is finite.
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finite and a basis for vn. So, W'T is finite. Fienees
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Corollary. The variety of residuated lattices is generated by
its finite members.



FEP

A class of algebras K has the finite embeddability property
(FEP) if for every A € IC, every finite partial subalgebra B of
A can be (partially) embedded in a finite D € K.
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FEP

A class of algebras K has the finite embeddability property e

(FEP) if for every A € IC, every finite partial subalgebra B of R

A can be (partially) embedded in a finite D € K. _—
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A class of algebras K has the finite embeddability property e

(FEP) if for every A € IC, every finite partial subalgebra B of R

A can be (partially) embedded in a finite D € K. _—
Theorem. Every variety of integral RL's axiomatized by Subvarety latice (atoms)
equartlons Over {\/7 ', 1} haS the FEP Subvariety lattice (joins)
= Bembedsin W} pvia{ }¥:B— W+ -

Representation - Frames

u WX B |S flnlte Applications of frames

DM-completion
Completeness - Cut elimination
+ FMP
m W )Y
ABE

Finiteness

Corollary. These varieties are generated as quasivarieties Equations 1

Equations 2

by their finite members. Stuctural ules

Amalgamation-Interpolation
Applications

Undecidability

References




FEP

A class of algebras K has the finite embeddability property

(FEP) if for every A € IC, every finite partial subalgebra B of

A can be (partially) embedded in a finite D € K.

Theorem. Every variety of integral RL's axiomatized by
equartions over {V, -, 1} has the FEP.

= Bembedsin W, gvia{_}<:B - W+
= W, g is finite
= WigeV

Corollary. These varieties are generated as quasivarieties
by their finite members.

Corollary. The corresponding logics have the strong finite
model property:

If & t/ ), for finite @, then there is a finite counter-model,
namely there is D € ¥V and a homomorphism f : Fm — D,
such that f(¢) =1, for all p € ®, but f(v) #£ 1.
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Equations 2

Theorem. If (W, B) is a Gentzen frame and ¢ an equation
over {V, -, 1}, then (W, B) satisfies R(¢) iff W satisfies ¢.

(The linearity of the denominator of R(e) plays an important

role in the proof.)
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Structural rules

Given an equation ¢ of the form ¢y <¢; v ---V ¢, where ¢, e
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Structural rules

Given an equation ¢ of the form ¢ty < ¢, VvV ---V t,, Where t; e
are {-,1}-terms we construct the rule R(¢) N
u[tl] = qa ... u[t ] — Congruences
- (R (8) ) Subvariety lattice (atoms)

ulto] = a

Subvariety lattice (joins)
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linear if all variables in ¢ty are distinct. Representation - Frames

Applications of frames

Theorem. Every system obtained from FL by adding linear DM-completon

Completeness - Cut elimination

rules has the cut elimination property. P

FEP
Finiteness

Equations 1
Equations 2

Structural rules

Amalgamation-Interpolation
Applications

Undecidability

References




Structural rules

Given an equation ¢ of the form ¢, < ¢, V---V t,, Where t;
are {-, 1}-terms we construct the rule R(¢)

ult1] = a ult,] = a
ulto] = a

(R(e))

where the t;’'s are evaluated in (W, o, ¢). Such a rule is called
linear if all variables in ¢y are distinct.

Theorem. Every system obtained from FL by adding linear
rules has the cut elimination property.

A set of rules of the form R(¢) is called reducing if there is a
complexity measure that decreases with upward applications
of the rules (and the rules of FL).
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Structural rules

Given an equation ¢ of the form ¢, < ¢, V---V t,, Where t; e
are {-, 1}-terms we construct the rule R(e) o
exampies
u tl = Qa D ult = Q Congruences
[ ] [ n] (R(g)) Subvariety lattice (atoms)
ulto] = a
Subvariety lattice (joins)
where the t;’s are evaluated in (W, 0,¢e). Such aruleis called o
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. i i Applications of frames
Theorem. Every system obtained from FL by adding linear Obrcompleion
- . . ompeteness- ut elimination
rules has the cut elimination property. PP
FEP
. . . . Finiteness
A set of rules of the form R(¢) is called reducing if there is a Equatons 1
. . . . Equations 2
complexity measure that decreases with upward applications
of the rules (and the rules of FL). et

Undecidability

Theorem. Every system obtained from FL by adding linear
reducing rules is decidable. The subvariety of residuated
lattices axiomatized by the corresponding equations has
decidable equational theory.
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Amalgamation-Interpolation

Given algebras A,B,C, maps f : A - Bandg: A — C and
Gentzen frames Wg, W, we define the frame W on B U C,
where N is specified by I'g,I'c N g iff there exists o € A
such that I'c N¢ g(a) and I'g, f(a) N .

Theorem. W is a Gentzen frame. Hence <: BUC — W
IS a quasihomomorhism.

Let D = W™ and h, k the restrictions of < to B and C.

Corollary. Themapsh: B —Dand k: C — D are
homomorphisms. Moreover, injections and surjections
transfer: If f is injective (surjective), so is h.

Corollary. Commutative RL has the amalgamation property
(f, g injective) and the congruence extension property ( f
Injective, g surjective).

Corollary. FL. has the Craig interpolation propety and
enjoys the Local Deduction Theorem.
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Applications

Cut-elimination (CE) and finite model property (FMP) for
FL, (cyclic) InFL. Generation by finite members for RL,
InFL

The finite embeddability property (FEP) for integral RL with
{v, -, 1}-axioms.
The strong separation property for HL

The above extend to the non-associative case, as well as
with the addition of suitable structural rules

Amalgamation for commutative RL and interpolation for
commutative FL

(Craig) Interpolation, Robinson Property, disjunction
property and Maximova variable separation property for
FL.

Super-amalgamation, Transferable injections, Congruence
extension property for commutative RL
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Undecidability
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(Un)decidability

Theorem. The quasiequational theory of RL is undecidable.
(Because we can embed semigroups/monoids.) The same
holds for commutative RL.
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(Un)decidability

Theorem. The quasiequational theory of RL is undecidable.
(Because we can embed semigroups/monoids.) The same
holds for commutative RL.

Theorem. The equational theory of modular RL is
undecidable. (By transfering the corresponding result for
modular lattices).

Theorem. The equational theory of commutative, distributive
RL is decidable.
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Word problem (1)

A finitely presented algebra A = (X|R) (in a class K) has a e
solvable word problem (WP) if there is an algorithm that,

given any pair of words over X, decides if they are equal or
not.
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Word problem (1)

A finitely presented algebra A = (X|R) (in a class K) has a
solvable word problem (WP) if there is an algorithm that,
given any pair of words over X, decides if they are equal or

not.

A class of algebras has solvable WP if all finitely presented

algebras in it do.
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Word problem (1)

A finitely presented algebra A = (X|R) (in a class K) has a
solvable word problem (WP) if there is an algorithm that,
given any pair of words over X, decides if they are equal or

not.

A class of algebras has solvable WP if all finitely presented

algebras in it do.

For example, the varieties of semigroups, groups, ¢-groups,
modular lattices have unsolvable WP.
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Word problem (1)

A finitely presented algebra A = (X|R) (in a class K) has a
solvable word problem (WP) if there is an algorithm that,
given any pair of words over X, decides if they are equal or
not.

A class of algebras has solvable WP if all finitely presented
algebras in it do.

For example, the varieties of semigroups, groups, ¢-groups,
modular lattices have unsolvable WP.

Main result: The variety CDRL of commutative, distributive
residuated lattices has unsolvable WP.
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Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability
(Un)decidability
Word problem (1)
Word problem (3)
Word problem (4)
Word problem (5)

References




Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.

Residuated lattices have a semigroup operation -, but
commutative semigroups have a decidable WP.
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Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.

Residuated lattices have a semigroup operation -, but
commutative semigroups have a decidable WP.

Alternative approach: Come up with another term definable
operation ® in residuated lattices that is associative.
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Main idea: Embed semigroups, whose WP is unsolvable. Tloy
Residuated lattices have a semigroup operation -, but e
Congruences

commutative semigroups have a decidable WP.
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Word problem (3)

We define an n-frame in a residuated lattice consisting of e

elements ay,--- ,a, and ¢;;, for 1 <14 < j < n and satisfying e

certain conditions (the a;’s are linearly independent, ¢;; is on )
ongruences

the line generated by a; and a; etc.).
We use the operations Vv and -.
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Word problem (3)

We define an n-frame in a residuated lattice consisting of
elements a;,--- ,a, and ¢;;, for 1 <+¢ < 7 < n and satisfying
certain conditions (the a;’s are linearly independent, ¢;; is on
the line generated by a; and a; etc.).

We use the operations Vv and -.

We define the ‘line’ L;; and the operation ©;;.

Theorem Given an 4-frame in a residuated lattice the
algebra (L;;, ®;;) is a semigroup.
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Word problem (4)

Given a finitely presented semigroup S and a variety V of
residuated lattices, we construct a finitely presented
residuated lattice A(S,V) in V.
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Word problem (4)

Given a finitely presented semigroup S and a variety V of e
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