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Outline

Part I: Motivation, examples and basic theory (congruences)
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Outline

Part I: Motivation, examples and basic theory (congruences)

Part II: Subvariety lattice (atoms and joins)
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Outline

Part I: Motivation, examples and basic theory (congruences)

Part II: Subvariety lattice (atoms and joins)

Part III: Representation, Logic, Decidability
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Boolean algebras

A Boolean algebra is a structure A = (A,∧,∨,→, 0, 1) such
that (we define ¬a = a→ 0) [a→ b = ¬a ∨ b = ¬(a ∧ ¬b)]
■ (A,∧,∨, 0, 1) is a bounded lattice,
■ for all a, b, c ∈ A,

a ∧ b ≤ c⇔ b ≤ a→ c (∧-residuation)

■ for all a ∈ A, ¬¬a = a (alt. a ∨ ¬a = 1).
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Boolean algebras

A Boolean algebra is a structure A = (A,∧,∨,→, 0, 1) such
that (we define ¬a = a→ 0) [a→ b = ¬a ∨ b = ¬(a ∧ ¬b)]
■ (A,∧,∨, 0, 1) is a bounded lattice,
■ for all a, b, c ∈ A,

a ∧ b ≤ c⇔ b ≤ a→ c (∧-residuation)

■ for all a ∈ A, ¬¬a = a (alt. a ∨ ¬a = 1).

Exercise. Distributivity (of ∧ over ∨) and complementation
follow from the above conditions. Also, ∧-residuation can be
written equationally.
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Boolean algebras

A Boolean algebra is a structure A = (A,∧,∨,→, 0, 1) such
that (we define ¬a = a→ 0) [a→ b = ¬a ∨ b = ¬(a ∧ ¬b)]
■ (A,∧,∨, 0, 1) is a bounded lattice,
■ for all a, b, c ∈ A,

a ∧ b ≤ c⇔ b ≤ a→ c (∧-residuation)

■ for all a ∈ A, ¬¬a = a (alt. a ∨ ¬a = 1).

Exercise. Distributivity (of ∧ over ∨) and complementation
follow from the above conditions. Also, ∧-residuation can be
written equationally.

Boolean algebras provide algebraic semantics for classical
propositional logic.
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Boolean algebras

A Boolean algebra is a structure A = (A,∧,∨,→, 0, 1) such
that (we define ¬a = a→ 0) [a→ b = ¬a ∨ b = ¬(a ∧ ¬b)]
■ (A,∧,∨, 0, 1) is a bounded lattice,
■ for all a, b, c ∈ A,

a ∧ b ≤ c⇔ b ≤ a→ c (∧-residuation)

■ for all a ∈ A, ¬¬a = a (alt. a ∨ ¬a = 1).

Exercise. Distributivity (of ∧ over ∨) and complementation
follow from the above conditions. Also, ∧-residuation can be
written equationally.

Boolean algebras provide algebraic semantics for classical
propositional logic.

Heyting algebras are defined without the third condition and
are algebraic semantics for intuitionistic propositional logic.
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Algebras of relations

Let X be a set and Rel(X) = P(X ×X) be the set of all
binary relations on X.
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Algebras of relations

Let X be a set and Rel(X) = P(X ×X) be the set of all
binary relations on X.

For relations R, and S, we denote by
■ R− the complement and by R∪ the converse of R
■ 1 is the equality/diagonal relation on X
■ R ; S the relational composition of R and S
■ R\S = (R ; S−)− and S/R = (S− ;R)−

■ R→ S = (R ∩ S−)− = R− ∪ S
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Algebras of relations

Let X be a set and Rel(X) = P(X ×X) be the set of all
binary relations on X.

For relations R, and S, we denote by
■ R− the complement and by R∪ the converse of R
■ 1 is the equality/diagonal relation on X
■ R ; S the relational composition of R and S
■ R\S = (R ; S−)− and S/R = (S− ;R)−

■ R→ S = (R ∩ S−)− = R− ∪ S

We have
■ (Rel(X),∩,∪,→, ∅, X2) is a Boolean algebra
■ (Rel(X), ; , 1) is a monoid
■ for all R,S, T ∈ Rel(X),

R ; S ⊆ T ⇔ S ⊆ R\T ⇔ R ⊆ T/S.
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Relation algebras

A Relation algebra is a structure
A = (A,∧,∨, ; , \, /, 0, 1, (_)−) such that (0 = 1−)
■ (A,∧,∨,⊥,⊤, (_)−) is a Boolean algebra

(we define ⊥ = 1 ∧ 1− and ⊤ = 1 ∨ 1−),
■ (A, ; , 1) is a monoid
■ for all a, b, c ∈ A,

a ; b ≤ c⇔ b ≤ a\c⇔ a ≤ c/b (residuation)

■ for all a ∈ A, ¬¬a = a (we define ¬a = a\0 = 0/a)
■ ¬(a−) = (¬a)− and ¬(¬x ; ¬y) = (x− ; y−)−.
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ℓ-groups

A lattice-ordered group is a lattice with a compatible group
structure. Alternatively, a lattice-ordered group is an algebra
L = (L,∧,∨, ·, \, /, 1) such that
■ (L,∧,∨) is a lattice,
■ (L, ·, 1) is a monoid
■ for all a, b, c ∈ L,

ab ≤ c⇔ b ≤ a\c⇔ a ≤ c/b.

■ for all a ∈ L, a · a−1 = 1 (we define x−1 = x\1 = 1/x).
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ℓ-groups

A lattice-ordered group is a lattice with a compatible group
structure. Alternatively, a lattice-ordered group is an algebra
L = (L,∧,∨, ·, \, /, 1) such that
■ (L,∧,∨) is a lattice,
■ (L, ·, 1) is a monoid
■ for all a, b, c ∈ L,

ab ≤ c⇔ b ≤ a\c⇔ a ≤ c/b.

■ for all a ∈ L, a · a−1 = 1 (we define x−1 = x\1 = 1/x).

Example. The set of real numbers under the usual order,
addition and subtraction.
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Powerset of a monoid

Let M = (M, ·, e) be a monoid and X,Y ⊆M .
We define X · Y = {x · y : x ∈ X, y ∈ Y },
X\Y = {z ∈M : X · {z} ⊆ Y },
Y/X = {z ∈M : {z} ·X ⊆ Y }.
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Powerset of a monoid

Let M = (M, ·, e) be a monoid and X,Y ⊆M .
We define X · Y = {x · y : x ∈ X, y ∈ Y },
X\Y = {z ∈M : X · {z} ⊆ Y },
Y/X = {z ∈M : {z} ·X ⊆ Y }.

For the powerset P(M), we have
■ (P(M),∩,∪) is a lattice
■ (P(M), ·, {e}) is a monoid
■ for all X,Y, Z ⊆M ,

X · Y ⊆ Z ⇔ Y ⊆ X\Z ⇔ X ⊆ Z/Y .
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Ideals of a ring

Let R be a ring with unit and let I(R) be the set of all
(two-sided) ideals of R.
For I, J ∈ I(R), we write IJ = {

∑
fin ij : i ∈ I, j ∈ J}

I\J = {k : Ik ⊆ J},
J/I = {k : kI ⊆ J}.
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Ideals of a ring

Let R be a ring with unit and let I(R) be the set of all
(two-sided) ideals of R.
For I, J ∈ I(R), we write IJ = {

∑
fin ij : i ∈ I, j ∈ J}

I\J = {k : Ik ⊆ J},
J/I = {k : kI ⊆ J}.

For the powerset I(R), we have
■ (I(R),∩,∪) is a lattice
■ (I(R), ·, R) is a monoid
■ for all ideals I, J,K of R,

I · J ⊆ K ⇔ J ⊆ I\K ⇔ I ⊆ K/J.
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Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid , is
an algebra L = (L,∧,∨, ·, \, /, 1) such that
■ (L,∧,∨) is a lattice,
■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c⇔ b ≤ a\c⇔ a ≤ c/b.

We have a\c = max{b : ab ≤ c}.
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Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid , is
an algebra L = (L,∧,∨, ·, \, /, 1) such that
■ (L,∧,∨) is a lattice,
■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c⇔ b ≤ a\c⇔ a ≤ c/b.

We have a\c = max{b : ab ≤ c}.

A pointed residuated lattice an extension of a residuated
lattice with a new constant 0. (∼x = x\0 and −x = 0/x.)
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #10

Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid , is
an algebra L = (L,∧,∨, ·, \, /, 1) such that
■ (L,∧,∨) is a lattice,
■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c⇔ b ≤ a\c⇔ a ≤ c/b.

We have a\c = max{b : ab ≤ c}.

A pointed residuated lattice an extension of a residuated
lattice with a new constant 0. (∼x = x\0 and −x = 0/x.)

A (pointed) residuated lattice is called
■ commutative, if (L, ·, 1) is commutative (xy = yx).
■ distributive, if (L,∧,∨) is distibutive
■ integral, if it satisfies x ≤ 1

■ contractive, if it satisfies x ≤ x2

■ involutive, if it satisfies ∼−x = x = −∼x.
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Properties

1. x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

2. x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)

3. x/(y ∨ z) = (x/y) ∧ (x/z) and (y ∨ z)\x = (y\x) ∧ (z\x)

4. (x/y)y ≤ x and y(y\x) ≤ x

5. x(y/z) ≤ (xy)/z and (z\y)x ≤ z\(yx)

6. (x/y)/z = x/(zy) and z\(y\x) = (yz)\x

7. x\(y/z) = (x\y)/z;
8. x/1 = x = 1\x

9. 1 ≤ x/x and 1 ≤ x\x

10. x ≤ y/(x\y) and x ≤ (y/x)\y

11. y/((y/x)\y) = y/x and (y/(x\y))\y = x\y

12. x/(x\x) = x and (x/x)\x = x;
13. (z/y)(y/x) ≤ z/x and (x\y)(y\z) ≤ x\z

Multiplication is order preserving in both coordinates. Each
division operation is order preserving in the numerator and
order reversing in the denominator.
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Properties (proofs)

x(y ∨ z) ≤ w ⇔ y ∨ z ≤ x\w

⇔ y, z ≤ x\w

⇔ xy, xz ≤ w

⇔ xy ∨ xz ≤ w
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Properties (proofs)

x(y ∨ z) ≤ w ⇔ y ∨ z ≤ x\w

⇔ y, z ≤ x\w

⇔ xy, xz ≤ w

⇔ xy ∨ xz ≤ w

x/y ≤ x/y ⇒ (x/y)y ≤ x
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Properties (proofs)

x(y ∨ z) ≤ w ⇔ y ∨ z ≤ x\w

⇔ y, z ≤ x\w

⇔ xy, xz ≤ w

⇔ xy ∨ xz ≤ w

x/y ≤ x/y ⇒ (x/y)y ≤ x

x(y/z)z ≤ xy ⇒ x(y/z) ≤ (xy)/z
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Properties (proofs)

x(y ∨ z) ≤ w ⇔ y ∨ z ≤ x\w

⇔ y, z ≤ x\w

⇔ xy, xz ≤ w

⇔ xy ∨ xz ≤ w

x/y ≤ x/y ⇒ (x/y)y ≤ x

x(y/z)z ≤ xy ⇒ x(y/z) ≤ (xy)/z

[(x/y)/z](zy) ≤ x⇒ (x/y)/z ≤ x/(zy)

[x/(zy)]zy ≤ x⇒ x/(zy) ≤ (x/y)/z



Title

Outline

RL examples

Boolean algebras

Algebras of relations

Relation algebras

ℓ-groups

Powerset of a monoid

Ideals of a ring

Residuated lattices

Properties

Properties (proofs)

Lattice/monoid properties

Linguistics (verbs)

Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References
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Properties (proofs)

x(y ∨ z) ≤ w ⇔ y ∨ z ≤ x\w

⇔ y, z ≤ x\w

⇔ xy, xz ≤ w

⇔ xy ∨ xz ≤ w

x/y ≤ x/y ⇒ (x/y)y ≤ x

x(y/z)z ≤ xy ⇒ x(y/z) ≤ (xy)/z

[(x/y)/z](zy) ≤ x⇒ (x/y)/z ≤ x/(zy)

[x/(zy)]zy ≤ x⇒ x/(zy) ≤ (x/y)/z

w ≤ x\(y/z) ⇔ xw ≤ y/z

⇔ xwz ≤ y

⇔ wz ≤ x\y

⇔ w ≤ (x\y)/z
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Lattice/monoid properties

(z/y)(y/x)x ≤ (z/y)y ≤ z ⇒ (z/y)(y/x) ≤ z/x
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Lattice/monoid properties

(z/y)(y/x)x ≤ (z/y)y ≤ z ⇒ (z/y)(y/x) ≤ z/x

RL’s satisfy no special purely lattice-theoretic or
monoid-theoretic property.
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Lattice/monoid properties

(z/y)(y/x)x ≤ (z/y)y ≤ z ⇒ (z/y)(y/x) ≤ z/x

RL’s satisfy no special purely lattice-theoretic or
monoid-theoretic property.

Every lattice can be embedded in a (cancellative) residuated
lattice.

Every monoid can be embedded in a (distributive) residuated
lattice.
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Linguistics (verbs)

We want to assign (a limited number of) linquistic types to
English words, as well as to phrases, in such a way that we
will be able to tell if a given phrase is a (syntacticly correct)
sentence.

We will use n for ‘noun phrase’ and s for ‘sentence’.
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Linguistics (verbs)

We want to assign (a limited number of) linquistic types to
English words, as well as to phrases, in such a way that we
will be able to tell if a given phrase is a (syntacticly correct)
sentence.

We will use n for ‘noun phrase’ and s for ‘sentence’.

For phrases we use the rule: if A : a and B : b, then AB : ab.

We write C : a\b if A : a implies AC : b, for all A.

Likewise, C : b/a if A : a implies CA : b, for all A.
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Linguistics (verbs)

We want to assign (a limited number of) linquistic types to
English words, as well as to phrases, in such a way that we
will be able to tell if a given phrase is a (syntacticly correct)
sentence.

We will use n for ‘noun phrase’ and s for ‘sentence’.

For phrases we use the rule: if A : a and B : b, then AB : ab.

We write C : a\b if A : a implies AC : b, for all A.

Likewise, C : b/a if A : a implies CA : b, for all A.

We assign type n to ‘John.’ Clearly, ‘plays’ has type n\s, as
all intransitive verbs.

John plays
n n\s

n(n\s) ≤ s

Some words may have more than one type. We write a ≤ b if
every word with type a has also type b.
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Linguistics (adverbs)

(John plays) here
n n\s s\s

[n(n\s)](s\s) ≤ s(s\s) ≤ s

John (plays here)
n n\s (n\s)\(n\s)

s\s ≤ (n\s)\(n\s)
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Linguistics (adverbs)

(John plays) here
n n\s s\s

[n(n\s)](s\s) ≤ s(s\s) ≤ s

John (plays here)
n n\s (n\s)\(n\s)

s\s ≤ (n\s)\(n\s)

Note that ‘plays’ is also a transitive verb, so it has type
(n\s)/n.

John (plays football)
n (n\s)/n n

[n((n\s)/n)]n ≤ s

(John plays) football (n\s)/n ≤ n\(s/n)

n n\(s/n) n n[(n\(s/n))n] ≤ s

Also, for ‘John definitely plays football’, note that we need to
have s\s ≤ (n\s)/(n\s).
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Linguistics (adverbs)

(John plays) here
n n\s s\s

[n(n\s)](s\s) ≤ s(s\s) ≤ s

John (plays here)
n n\s (n\s)\(n\s)

s\s ≤ (n\s)\(n\s)

Note that ‘plays’ is also a transitive verb, so it has type
(n\s)/n.

John (plays football)
n (n\s)/n n

[n((n\s)/n)]n ≤ s

(John plays) football (n\s)/n ≤ n\(s/n)

n n\(s/n) n n[(n\(s/n))n] ≤ s

Also, for ‘John definitely plays football’, note that we need to
have s\s ≤ (n\s)/(n\s).

Q: Can we decide (in)equations in residuated lattices?
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Congruences
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Congruences G, B

Definition. A congruence on an algebra A is an equivalence
relation on A that is compatible with the operations of A.
(Alt.the kernel of a homomorphism out of A.)
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Congruences G, B

Definition. A congruence on an algebra A is an equivalence
relation on A that is compatible with the operations of A.
(Alt.the kernel of a homomorphism out of A.)

Congruences in groups correspond to normal subgroups.

Given a congruence θ on a group G, the congruence class
[1]θ of 1 is a normal subgroup.

Given a normal subgroup N of a group G, the relation θN is a
congruence, where (a, b) ∈ θN iff a\b ∈ N iff {a\b, b\a} ⊆ N .
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Congruences G, B

Definition. A congruence on an algebra A is an equivalence
relation on A that is compatible with the operations of A.
(Alt.the kernel of a homomorphism out of A.)

Congruences in groups correspond to normal subgroups.

Given a congruence θ on a group G, the congruence class
[1]θ of 1 is a normal subgroup.

Given a normal subgroup N of a group G, the relation θN is a
congruence, where (a, b) ∈ θN iff a\b ∈ N iff {a\b, b\a} ⊆ N .

Congruences in Boolean algebras correspond to filters.

Given a congruence θ on a Boolean algebra A, the
congruence class [1]θ of 1 is a filter of A.

Given a filter F of a Boolean algebra A, θF is a congruence,
where (a, b) ∈ θF iff a↔ b ∈ F iff {a→ b, b→ a} ⊆ F .

Note that a filter is a subset of A closed under {∧,∨,→, 1}
that is convex (x ≤ y ≤ z and x, z ∈ F implies y ∈ F ).
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Congruences R, M

Congruences on rings correspond to ideals.



Title

Outline

RL examples

Congruences

Congruences G, B

Congruences R, M

Congruences and sets

Correspondence

CNM to CNS

CNS to congruence

CNS to congruence

Lattice isomorphism

Compositions

Generation

Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References
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Congruences R, M

Congruences on rings correspond to ideals.

Congruences on ℓ-groups correspond to convex ℓ-subgroups.
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Congruences R, M

Congruences on rings correspond to ideals.

Congruences on ℓ-groups correspond to convex ℓ-subgroups.

Congruences on monoids do not correspond to any
particular kind of subset.
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Congruences R, M

Congruences on rings correspond to ideals.

Congruences on ℓ-groups correspond to convex ℓ-subgroups.

Congruences on monoids do not correspond to any
particular kind of subset.

Do congruences on residuated lattices correspond to certain
subsets?
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Congruences and sets

Let A be a residuated lattice and a, x ∈ A. We define the
conjugates λa(x) = [a\(xa)] ∧ 1 and ρa(x) = ax/a ∧ 1.

An iterated conjugate is a composition γa1
(γa2

(. . . γan
(x))),

where n ∈ ω, a1, a2, . . . , an ∈ A and γai
∈ {λai

, ρai
}, for all i.
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Congruences and sets

Let A be a residuated lattice and a, x ∈ A. We define the
conjugates λa(x) = [a\(xa)] ∧ 1 and ρa(x) = ax/a ∧ 1.

An iterated conjugate is a composition γa1
(γa2

(. . . γan
(x))),

where n ∈ ω, a1, a2, . . . , an ∈ A and γai
∈ {λai

, ρai
}, for all i.

X ⊆ A is called normal , if it is closed under conjugates.
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Congruences and sets

Let A be a residuated lattice and a, x ∈ A. We define the
conjugates λa(x) = [a\(xa)] ∧ 1 and ρa(x) = ax/a ∧ 1.

An iterated conjugate is a composition γa1
(γa2

(. . . γan
(x))),

where n ∈ ω, a1, a2, . . . , an ∈ A and γai
∈ {λai

, ρai
}, for all i.

X ⊆ A is called normal , if it is closed under conjugates.

We will be considering correspondences between:
■ Congruences on A

■ Convex, normal subalgebras (CNSs) of A

■ Convex , normal (in A) submonoids (CNMs) of A
− =↓ 1

■ Deductive filters of A: F ⊆ A
◆ ↑ 1 ⊆ F
◆ a, a\b ∈ F implies b ∈ F (eqv. ↑F = F )
◆ a ∈ F implies a ∧ 1 ∈ F (eqv. F is ∧-closed)
◆ a ∈ F implies b\ab, ba/b ∈ F
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Correspondence

If S is a CNS of A, M a CNM of A
−, θ a congruence on A

and F a DF of A, then

1. Ms(S) = S−, Mc(θ) = [1]−θ and Mf (F ) = F− are CNMs
of A

−,

2. Sm(M) = Ξ(M), Sc(θ) = [1]θ and Sf (F ) = Ξ(F−) are
CNSs of A,

3. Fs(S) = ↑S, Fm(M) = ↑M , and Fc(θ) = ↑[1]θ are DFs of
A.

4. Θs(S) = {(a, b)|a↔ b ∈ S}, Θm(M) = {(a, b)|a↔ b ∈M}
and Θf (F ) = {(a, b)|a↔ b ∈ F} = {(a, b)|a\b, b\a ∈ F}
are congruences of A.

a↔ b = a\b ∧ b\a ∧ 1

Ξ(X) = {a ∈ A : x ≤ a ≤ x\1, for some x ∈ X}.
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CNM to CNS

Ξ(M) = {a ∈ A|x ≤ a ≤ x\1, for some x ∈M} is a CNS.



Title

Outline

RL examples

Congruences

Congruences G, B

Congruences R, M

Congruences and sets

Correspondence

CNM to CNS

CNS to congruence

CNS to congruence

Lattice isomorphism

Compositions

Generation

Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References
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CNM to CNS

Ξ(M) = {a ∈ A|x ≤ a ≤ x\1, for some x ∈M} is a CNS.

Claim: a ∈ Ξ(M) iff ∃y, z ∈M such that y ≤ a ≤ z\1.
Indeed, yz ≤ y ≤ a ≤ z\1 ≤ yz\1 and yz ∈M .
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CNM to CNS

Ξ(M) = {a ∈ A|x ≤ a ≤ x\1, for some x ∈M} is a CNS.

Claim: a ∈ Ξ(M) iff ∃y, z ∈M such that y ≤ a ≤ z\1.
Indeed, yz ≤ y ≤ a ≤ z\1 ≤ yz\1 and yz ∈M .

Convexity: If a, b ∈ Ξ(M), then ∃x, y ∈M such that
x ≤ a ≤ x\1 and y ≤ b ≤ y\1.
If a ≤ c ≤ b, then x ≤ a ≤ c ≤ b ≤ y\1, so c ∈ Ξ(M).
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CNM to CNS

Ξ(M) = {a ∈ A|x ≤ a ≤ x\1, for some x ∈M} is a CNS.

Claim: a ∈ Ξ(M) iff ∃y, z ∈M such that y ≤ a ≤ z\1.
Indeed, yz ≤ y ≤ a ≤ z\1 ≤ yz\1 and yz ∈M .

Convexity: If a, b ∈ Ξ(M), then ∃x, y ∈M such that
x ≤ a ≤ x\1 and y ≤ b ≤ y\1.
If a ≤ c ≤ b, then x ≤ a ≤ c ≤ b ≤ y\1, so c ∈ Ξ(M).

Subalg.: xy ≤ x ∧ y ≤ a ∧ b ≤ x\1 ∧ y\1 = (x ∨ y)\1 ≤ x\1
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CNM to CNS

Ξ(M) = {a ∈ A|x ≤ a ≤ x\1, for some x ∈M} is a CNS.

Claim: a ∈ Ξ(M) iff ∃y, z ∈M such that y ≤ a ≤ z\1.
Indeed, yz ≤ y ≤ a ≤ z\1 ≤ yz\1 and yz ∈M .

Convexity: If a, b ∈ Ξ(M), then ∃x, y ∈M such that
x ≤ a ≤ x\1 and y ≤ b ≤ y\1.
If a ≤ c ≤ b, then x ≤ a ≤ c ≤ b ≤ y\1, so c ∈ Ξ(M).

Subalg.: xy ≤ x ∧ y ≤ a ∧ b ≤ x\1 ∧ y\1 = (x ∨ y)\1 ≤ x\1

x ≤ x ∨ y ≤ a ∨ b ≤ x\1 ∨ y\1 ≤ (x ∧ y)\1 ≤ (xy)\1
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CNM to CNS

Ξ(M) = {a ∈ A|x ≤ a ≤ x\1, for some x ∈M} is a CNS.

Claim: a ∈ Ξ(M) iff ∃y, z ∈M such that y ≤ a ≤ z\1.
Indeed, yz ≤ y ≤ a ≤ z\1 ≤ yz\1 and yz ∈M .

Convexity: If a, b ∈ Ξ(M), then ∃x, y ∈M such that
x ≤ a ≤ x\1 and y ≤ b ≤ y\1.
If a ≤ c ≤ b, then x ≤ a ≤ c ≤ b ≤ y\1, so c ∈ Ξ(M).

Subalg.: xy ≤ x ∧ y ≤ a ∧ b ≤ x\1 ∧ y\1 = (x ∨ y)\1 ≤ x\1

x ≤ x ∨ y ≤ a ∨ b ≤ x\1 ∨ y\1 ≤ (x ∧ y)\1 ≤ (xy)\1

xy ≤ ab ≤ (x\1)(y\1) ≤ x\(y\1) = (yx)\1
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CNM to CNS

Ξ(M) = {a ∈ A|x ≤ a ≤ x\1, for some x ∈M} is a CNS.

Claim: a ∈ Ξ(M) iff ∃y, z ∈M such that y ≤ a ≤ z\1.
Indeed, yz ≤ y ≤ a ≤ z\1 ≤ yz\1 and yz ∈M .

Convexity: If a, b ∈ Ξ(M), then ∃x, y ∈M such that
x ≤ a ≤ x\1 and y ≤ b ≤ y\1.
If a ≤ c ≤ b, then x ≤ a ≤ c ≤ b ≤ y\1, so c ∈ Ξ(M).

Subalg.: xy ≤ x ∧ y ≤ a ∧ b ≤ x\1 ∧ y\1 = (x ∨ y)\1 ≤ x\1

x ≤ x ∨ y ≤ a ∨ b ≤ x\1 ∨ y\1 ≤ (x ∧ y)\1 ≤ (xy)\1

xy ≤ ab ≤ (x\1)(y\1) ≤ x\(y\1) = (yx)\1

λa(yx) ≤ a\yxa ≤ a\[y/(x\1)]a ≤ a\[b/a]a ≤ a\b ≤ x\(y\1) = yx\1
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CNM to CNS

Ξ(M) = {a ∈ A|x ≤ a ≤ x\1, for some x ∈M} is a CNS.

Claim: a ∈ Ξ(M) iff ∃y, z ∈M such that y ≤ a ≤ z\1.
Indeed, yz ≤ y ≤ a ≤ z\1 ≤ yz\1 and yz ∈M .

Convexity: If a, b ∈ Ξ(M), then ∃x, y ∈M such that
x ≤ a ≤ x\1 and y ≤ b ≤ y\1.
If a ≤ c ≤ b, then x ≤ a ≤ c ≤ b ≤ y\1, so c ∈ Ξ(M).

Subalg.: xy ≤ x ∧ y ≤ a ∧ b ≤ x\1 ∧ y\1 = (x ∨ y)\1 ≤ x\1

x ≤ x ∨ y ≤ a ∨ b ≤ x\1 ∨ y\1 ≤ (x ∧ y)\1 ≤ (xy)\1

xy ≤ ab ≤ (x\1)(y\1) ≤ x\(y\1) = (yx)\1

λa(yx) ≤ a\yxa ≤ a\[y/(x\1)]a ≤ a\[b/a]a ≤ a\b ≤ x\(y\1) = yx\1

xy ≤ x/(y\1) ≤ a/b ≤ (x\1)/y ≤ [xρ(x\1)/y(y)]\1

(for u = (x\1)/y we have xρu(y)u ≤ x{uy/u}u ≤ xuy ≤ 1)
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CNM to CNS

Ξ(M) = {a ∈ A|x ≤ a ≤ x\1, for some x ∈M} is a CNS.

Claim: a ∈ Ξ(M) iff ∃y, z ∈M such that y ≤ a ≤ z\1.
Indeed, yz ≤ y ≤ a ≤ z\1 ≤ yz\1 and yz ∈M .

Convexity: If a, b ∈ Ξ(M), then ∃x, y ∈M such that
x ≤ a ≤ x\1 and y ≤ b ≤ y\1.
If a ≤ c ≤ b, then x ≤ a ≤ c ≤ b ≤ y\1, so c ∈ Ξ(M).

Subalg.: xy ≤ x ∧ y ≤ a ∧ b ≤ x\1 ∧ y\1 = (x ∨ y)\1 ≤ x\1

x ≤ x ∨ y ≤ a ∨ b ≤ x\1 ∨ y\1 ≤ (x ∧ y)\1 ≤ (xy)\1

xy ≤ ab ≤ (x\1)(y\1) ≤ x\(y\1) = (yx)\1

λa(yx) ≤ a\yxa ≤ a\[y/(x\1)]a ≤ a\[b/a]a ≤ a\b ≤ x\(y\1) = yx\1

xy ≤ x/(y\1) ≤ a/b ≤ (x\1)/y ≤ [xρ(x\1)/y(y)]\1

(for u = (x\1)/y we have xρu(y)u ≤ x{uy/u}u ≤ xuy ≤ 1)

Normality: As λc(x)λc(x\1) ≤ c\x(x\1)c ∧ 1 ≤ c\c ∧ 1 = 1,

λc(x) ≤ λc(a) ≤ λc(x\1) ≤ λc(x)\1
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CNS to congruence

Θs(S) = {(a, b)|a↔ b ∈ S} is a congruence.
a↔ b = a\b ∧ b\a ∧ 1
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CNS to congruence

Θs(S) = {(a, b)|a↔ b ∈ S} is a congruence.
a↔ b = a\b ∧ b\a ∧ 1

Equivalence: Θs(S) is reflexive and symmetric. If
a↔ b, b↔ c ∈ S, we have

(a↔ b)(b↔ c) ∧ (b↔ c)(a↔ b) ≤

≤ (a\b)(b\c) ∧ (c\b)(b\a) ∧ 1 ≤ (a↔ c) ≤ 1.

Compatibility: Assume a↔ b ∈ S and c ∈ A.

a\b ≤ ca\cb implies a↔ b ≤ ca↔ cb ≤ 1
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CNS to congruence

Θs(S) = {(a, b)|a↔ b ∈ S} is a congruence.
a↔ b = a\b ∧ b\a ∧ 1

Equivalence: Θs(S) is reflexive and symmetric. If
a↔ b, b↔ c ∈ S, we have

(a↔ b)(b↔ c) ∧ (b↔ c)(a↔ b) ≤

≤ (a\b)(b\c) ∧ (c\b)(b\a) ∧ 1 ≤ (a↔ c) ≤ 1.

Compatibility: Assume a↔ b ∈ S and c ∈ A.

a\b ≤ ca\cb implies a↔ b ≤ ca↔ cb ≤ 1

λc(a↔ b) ≤ c\(a\b)c ∧ c\(b\a)c ∧ 1 ≤ ac↔ bc ≤ 1
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CNS to congruence

Θs(S) = {(a, b)|a↔ b ∈ S} is a congruence.
a↔ b = a\b ∧ b\a ∧ 1

Equivalence: Θs(S) is reflexive and symmetric. If
a↔ b, b↔ c ∈ S, we have

(a↔ b)(b↔ c) ∧ (b↔ c)(a↔ b) ≤

≤ (a\b)(b\c) ∧ (c\b)(b\a) ∧ 1 ≤ (a↔ c) ≤ 1.

Compatibility: Assume a↔ b ∈ S and c ∈ A.

a\b ≤ ca\cb implies a↔ b ≤ ca↔ cb ≤ 1

λc(a↔ b) ≤ c\(a\b)c ∧ c\(b\a)c ∧ 1 ≤ ac↔ bc ≤ 1

(a ∧ c) · (a↔ b) ≤ a(a↔ b) ∧ c(a↔ b) ≤ b ∧ c implies
a↔ b ≤ (a ∧ c)\(b ∧ c).
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CNS to congruence

Θs(S) = {(a, b)|a↔ b ∈ S} is a congruence.
a↔ b = a\b ∧ b\a ∧ 1

Equivalence: Θs(S) is reflexive and symmetric. If
a↔ b, b↔ c ∈ S, we have

(a↔ b)(b↔ c) ∧ (b↔ c)(a↔ b) ≤

≤ (a\b)(b\c) ∧ (c\b)(b\a) ∧ 1 ≤ (a↔ c) ≤ 1.

Compatibility: Assume a↔ b ∈ S and c ∈ A.

a\b ≤ ca\cb implies a↔ b ≤ ca↔ cb ≤ 1

λc(a↔ b) ≤ c\(a\b)c ∧ c\(b\a)c ∧ 1 ≤ ac↔ bc ≤ 1

(a ∧ c) · (a↔ b) ≤ a(a↔ b) ∧ c(a↔ b) ≤ b ∧ c implies
a↔ b ≤ (a ∧ c)\(b ∧ c). Likewise, a↔ b ≤ (b ∧ c)\(a ∧ c). So,

a↔ b ≤ (a ∧ c)↔(b ∧ c) ≤ 1
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CNS to congruence

Θs(S) = {(a, b)|a↔ b ∈ S} is a congruence.
a↔ b = a\b ∧ b\a ∧ 1

Equivalence: Θs(S) is reflexive and symmetric. If
a↔ b, b↔ c ∈ S, we have

(a↔ b)(b↔ c) ∧ (b↔ c)(a↔ b) ≤

≤ (a\b)(b\c) ∧ (c\b)(b\a) ∧ 1 ≤ (a↔ c) ≤ 1.

Compatibility: Assume a↔ b ∈ S and c ∈ A.

a\b ≤ ca\cb implies a↔ b ≤ ca↔ cb ≤ 1

λc(a↔ b) ≤ c\(a\b)c ∧ c\(b\a)c ∧ 1 ≤ ac↔ bc ≤ 1

(a ∧ c) · (a↔ b) ≤ a(a↔ b) ∧ c(a↔ b) ≤ b ∧ c implies
a↔ b ≤ (a ∧ c)\(b ∧ c). Likewise, a↔ b ≤ (b ∧ c)\(a ∧ c). So,

a↔ b ≤ (a ∧ c)↔(b ∧ c) ≤ 1

a\b ≤ (c\a)\(c\b) and b\a ≤ (c\b)\(c\a) imply
a↔ b ≤ (c\a)↔(c\b) ≤ 1
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CNS to congruence

a\b ≤ (a\c)/(b\c) and b\a ≤ (b\c)/(a\c) imply
a↔ b ≤ (a\c)↔′(b\c) ≤ 1

where a↔′ b = a/b ∧ b/a ∧ 1.
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CNS to congruence

a\b ≤ (a\c)/(b\c) and b\a ≤ (b\c)/(a\c) imply
a↔ b ≤ (a\c)↔′(b\c) ≤ 1

where a↔′ b = a/b ∧ b/a ∧ 1.

So, (a\c)↔′(b\c) ∈ S and (a\c)↔(b\c) ∈ S.



Title

Outline

RL examples

Congruences

Congruences G, B

Congruences R, M

Congruences and sets

Correspondence

CNM to CNS

CNS to congruence

CNS to congruence

Lattice isomorphism

Compositions

Generation

Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References
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CNS to congruence

a\b ≤ (a\c)/(b\c) and b\a ≤ (b\c)/(a\c) imply
a↔ b ≤ (a\c)↔′(b\c) ≤ 1

where a↔′ b = a/b ∧ b/a ∧ 1.

So, (a\c)↔′(b\c) ∈ S and (a\c)↔(b\c) ∈ S.

Claim: a↔′ b ∈ S iff a↔ b ∈ S.
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CNS to congruence

a\b ≤ (a\c)/(b\c) and b\a ≤ (b\c)/(a\c) imply
a↔ b ≤ (a\c)↔′(b\c) ≤ 1

where a↔′ b = a/b ∧ b/a ∧ 1.

So, (a\c)↔′(b\c) ∈ S and (a\c)↔(b\c) ∈ S.

Claim: a↔′ b ∈ S iff a↔ b ∈ S.

λb(a↔
′b) = b\[a/b ∧ b/a ∧ 1]b ∧ 1 ≤ b\a ∧ 1
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CNS to congruence

a\b ≤ (a\c)/(b\c) and b\a ≤ (b\c)/(a\c) imply
a↔ b ≤ (a\c)↔′(b\c) ≤ 1

where a↔′ b = a/b ∧ b/a ∧ 1.

So, (a\c)↔′(b\c) ∈ S and (a\c)↔(b\c) ∈ S.

Claim: a↔′ b ∈ S iff a↔ b ∈ S.

λb(a↔
′b) = b\[a/b ∧ b/a ∧ 1]b ∧ 1 ≤ b\a ∧ 1

λb(a↔
′b) ∧ λa(a↔′b) ≤ a↔ b ≤ 1
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Lattice isomorphism

1. The CNSs of A, the CNMs of A
− and the DF of A form

lattices, denoted by CNS(A), CNM(A) and Fil(A),
respectively.

2. All the above lattices are isomorphic to the congruence
lattice Con(A) of A via the maps defined above.

3. The composition of the above maps gives the
corresponding map; e.g., Ms(Sc(θ)) = Mc(θ).
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Lattice isomorphism

1. The CNSs of A, the CNMs of A
− and the DF of A form

lattices, denoted by CNS(A), CNM(A) and Fil(A),
respectively.

2. All the above lattices are isomorphic to the congruence
lattice Con(A) of A via the maps defined above.

3. The composition of the above maps gives the
corresponding map; e.g., Ms(Sc(θ)) = Mc(θ).

Claim: Sc and Θs are inverse maps.
S = [1]Θs(S): a ∈ S implies a↔ 1 = a\1 ∧ a ∧ 1 ∈ S.
Conversely, (a↔ 1) ≤ a ≤ (a↔ 1)\1.
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Lattice isomorphism

1. The CNSs of A, the CNMs of A
− and the DF of A form

lattices, denoted by CNS(A), CNM(A) and Fil(A),
respectively.

2. All the above lattices are isomorphic to the congruence
lattice Con(A) of A via the maps defined above.

3. The composition of the above maps gives the
corresponding map; e.g., Ms(Sc(θ)) = Mc(θ).

Claim: Sc and Θs are inverse maps.
S = [1]Θs(S): a ∈ S implies a↔ 1 = a\1 ∧ a ∧ 1 ∈ S.
Conversely, (a↔ 1) ≤ a ≤ (a↔ 1)\1.

θ = Θs(Sc(θ)): If (a, b) ∈ Θs([1]θ), then a↔ b ∈ [1]θ, so
a↔ b θ 1.
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Lattice isomorphism

1. The CNSs of A, the CNMs of A
− and the DF of A form

lattices, denoted by CNS(A), CNM(A) and Fil(A),
respectively.

2. All the above lattices are isomorphic to the congruence
lattice Con(A) of A via the maps defined above.

3. The composition of the above maps gives the
corresponding map; e.g., Ms(Sc(θ)) = Mc(θ).

Claim: Sc and Θs are inverse maps.
S = [1]Θs(S): a ∈ S implies a↔ 1 = a\1 ∧ a ∧ 1 ∈ S.
Conversely, (a↔ 1) ≤ a ≤ (a↔ 1)\1.

θ = Θs(Sc(θ)): If (a, b) ∈ Θs([1]θ), then a↔ b ∈ [1]θ, so
a↔ b θ 1. Therefore, a θ a(a↔ b) ≤ a(a\b) ≤ b, so a ∨ b θ b.
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Lattice isomorphism

1. The CNSs of A, the CNMs of A
− and the DF of A form

lattices, denoted by CNS(A), CNM(A) and Fil(A),
respectively.

2. All the above lattices are isomorphic to the congruence
lattice Con(A) of A via the maps defined above.

3. The composition of the above maps gives the
corresponding map; e.g., Ms(Sc(θ)) = Mc(θ).

Claim: Sc and Θs are inverse maps.
S = [1]Θs(S): a ∈ S implies a↔ 1 = a\1 ∧ a ∧ 1 ∈ S.
Conversely, (a↔ 1) ≤ a ≤ (a↔ 1)\1.

θ = Θs(Sc(θ)): If (a, b) ∈ Θs([1]θ), then a↔ b ∈ [1]θ, so
a↔ b θ 1. Therefore, a θ a(a↔ b) ≤ a(a\b) ≤ b, so a ∨ b θ b.
Likewise, a ∨ b θ a, so a θ b.
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Lattice isomorphism

1. The CNSs of A, the CNMs of A
− and the DF of A form

lattices, denoted by CNS(A), CNM(A) and Fil(A),
respectively.

2. All the above lattices are isomorphic to the congruence
lattice Con(A) of A via the maps defined above.

3. The composition of the above maps gives the
corresponding map; e.g., Ms(Sc(θ)) = Mc(θ).

Claim: Sc and Θs are inverse maps.
S = [1]Θs(S): a ∈ S implies a↔ 1 = a\1 ∧ a ∧ 1 ∈ S.
Conversely, (a↔ 1) ≤ a ≤ (a↔ 1)\1.

θ = Θs(Sc(θ)): If (a, b) ∈ Θs([1]θ), then a↔ b ∈ [1]θ, so
a↔ b θ 1. Therefore, a θ a(a↔ b) ≤ a(a\b) ≤ b, so a ∨ b θ b.
Likewise, a ∨ b θ a, so a θ b.

Conversely, if a θ b, then
1 = (a\a ∧ b\b ∧ 1) θ (a\b ∧ b\a ∧ 1) = a↔ b.



Title

Outline

RL examples

Congruences

Congruences G, B

Congruences R, M

Congruences and sets

Correspondence

CNM to CNS

CNS to congruence

CNS to congruence

Lattice isomorphism

Compositions

Generation

Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References
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Compositions

Claim: Sf (F ) = Sc(Θf (F )). (Sketch)
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Compositions

Claim: Sf (F ) = Sc(Θf (F )). (Sketch)

If a ∈ Sc(Θf (F )), then a Θf (F ) 1, so a\1, 1\a ∈ F .
Hence a, 1/a ∈ F . Since 1 ∈ F , we get x = a ∧ 1/a ∧ 1 ∈ F−.
Obviously, x ≤ a; also a ≤ (1/a)\1 ≤ x\1.
Thus, a ∈ Sf (F ).
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #25

Compositions

Claim: Sf (F ) = Sc(Θf (F )). (Sketch)

If a ∈ Sc(Θf (F )), then a Θf (F ) 1, so a\1, 1\a ∈ F .
Hence a, 1/a ∈ F . Since 1 ∈ F , we get x = a ∧ 1/a ∧ 1 ∈ F−.
Obviously, x ≤ a; also a ≤ (1/a)\1 ≤ x\1.
Thus, a ∈ Sf (F ).

Conversely, if a ∈ Sf (F ), then x ≤ a ≤ x\1, for some x ∈ F−.
So, a ∈ F and 1/(x\1) ≤ 1/a.
Since, x ≤ 1/(x\1), we have x ≤ 1/a and 1/a ∈ F .
Thus both a/1 and 1/a are in F . Hence, a ∈ [1]Θf (F ).
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Generation

If X is a subset of A− and Y is a subset of A, then

1. the CNM M(X) of A− generated by X is equal to
Ξ−ΠΓ(X).

2. The CNS S(Y ) of A generated by Y is equal to ΞΠΓ∆(Y ).
3. The DF F (Y ) of A generated by Y ⊆ A is equal to

↑ΠΓ(Y ) = ↑ΠΓ(Y ∧ 1).

4. The congruence Θ(P ) on A generated by P ⊆ A2 is equal
to Θm(M(P ′)), where P ′ = {a↔ b|(a, b) ∈ P}.

X ∧ 1 = {x ∧ 1 : x ∈ X}

∆(X) = {x↔ 1 : x ∈ X}

Π(X) = {x1x2 · · ·xn : n ≥ 1, xi ∈ X} ∪ {1}

Γ(X) = {γ(x) : γ is an iterated conjugate }

Ξ(X) = {a ∈ A : x ≤ a ≤ x\1, for some x ∈ X}

Ξ−(X) = {a ∈ A : x ≤ a ≤ 1, for some x ∈ X}

a↔ b = a\b ∧ b\a ∧ 1
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Generation of CNM

Clearly, if M is a CNM of A
− that contains X, then it

contains Γ(X), by normality, ΠΓ(X), since M is closed under
product, and Ξ−ΠΓ(X), since M is convex and contains 1.

We will now show that Ξ−ΠΓ(X) itself is a CNM of A−; it
obviously contains X. It is clearly convex and a submonoid of
A

−. To show that it is convex, consider a ∈ Ξ−ΠΓ(X) and
u ∈ A. There are x1, . . . , xn ∈ X and iterated conjugates
γ1, . . . , γn such that γ1(x1) · · · γn(xn) ≤ a ≤ 1. We have

∏
λu(γi(xi)) ≤ λu(

∏
γi(xi)) ≤ λu(a) ≤ 1.

Idea for n = 2:

λu(a1)λu(a2) = (u\a1u ∧ 1)(u\a2u ∧ 1) ≤ (u\a1u)(u\a2u) ∧ 1

≤ u\a1u(u\a2u) ∧ 1 ≤ u\a1a2u ∧ 1 = λu(a1a2).

Also, λu(γi(xi)) ∈ Γ(X) and
∏
λu(γi(xi)) ∈ ΠΓ(X), so

λu(a) ∈ Ξ−ΠΓ(X). Likewise, we have ρu(a) ∈ Ξ−ΠΓ(X).
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Subvariety lattice (atoms)
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Size

We view RL as the subvariety of RLp axiomatized by 0 = 1.
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Size

We view RL as the subvariety of RLp axiomatized by 0 = 1.

The subvariety lattices of HA (Heyting algebras) and Br

(Brouwerian algebras) are uncountable, hence so are Λ(RLp)
and Λ(RL).
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Size

We view RL as the subvariety of RLp axiomatized by 0 = 1.

The subvariety lattices of HA (Heyting algebras) and Br

(Brouwerian algebras) are uncountable, hence so are Λ(RLp)
and Λ(RL).

We will

■ determine the size of the set of atoms in Λ(RLp).

■ outline a method for finding axiomatizations of certain
varieties

■ give a description of joins in Λ(RLp).
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BA and 2

The variety BA of Boolean algebras is generated by the
2-element algebra 2. BA = HSP(2)= V(2).
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BA and 2

The variety BA of Boolean algebras is generated by the
2-element algebra 2. BA = HSP(2)= V(2).

H: homomorphic images
S: subalgebras
P: direct products
V = HSP
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BA and 2

The variety BA of Boolean algebras is generated by the
2-element algebra 2. BA = HSP(2)= V(2).

H: homomorphic images
S: subalgebras
P: direct products
V = HSP

Proof idea: Use the prime ideal-filter theorem for distributive
lattices to show that every Boolean algebra is a subdirect
product of copies of 2.
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BA and 2

The variety BA of Boolean algebras is generated by the
2-element algebra 2. BA = HSP(2)= V(2).

H: homomorphic images
S: subalgebras
P: direct products
V = HSP

Proof idea: Use the prime ideal-filter theorem for distributive
lattices to show that every Boolean algebra is a subdirect
product of copies of 2.

Subdirect product: A subalgebra of a product such that all
projections are onto.
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BA and 2

The variety BA of Boolean algebras is generated by the
2-element algebra 2. BA = HSP(2)= V(2).

H: homomorphic images
S: subalgebras
P: direct products
V = HSP

Proof idea: Use the prime ideal-filter theorem for distributive
lattices to show that every Boolean algebra is a subdirect
product of copies of 2.

Subdirect product: A subalgebra of a product such that all
projections are onto.

Clearly, 2 is subdirectly irreducible.

Subdirectly irreducible: non-trivial and
■ it cannot be written as a subdirect product of a family that

does not contain it.
■ Alt. its congruence lattice is ∆ ∪ ↑µ.
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BA: an atom

The variety BA is an atom in the lattice of subvarieties of pRL.
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BA: an atom

The variety BA is an atom in the lattice of subvarieties of pRL.

pRL is a congruence distributive variety (RL’s have lattice
reducts) so Jònsson’s Lemma applies:
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BA: an atom

The variety BA is an atom in the lattice of subvarieties of pRL.

pRL is a congruence distributive variety (RL’s have lattice
reducts) so Jònsson’s Lemma applies:
Given a class K ⊆ RLp, the subdirectly irreducible algebras
V(K)SI in the variety generated by K are in HSPU(K).
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BA: an atom

The variety BA is an atom in the lattice of subvarieties of pRL.

pRL is a congruence distributive variety (RL’s have lattice
reducts) so Jònsson’s Lemma applies:
Given a class K ⊆ RLp, the subdirectly irreducible algebras
V(K)SI in the variety generated by K are in HSPU(K).

An ultraproduct A ∈ PU(K) is obtained by taking
■ a product

∏
i∈I Ai of Ai ∈ K and then

■ a quotient
∏

i∈I Ai/ ∼=U by an ultrafilter U over I (maximal
filter on P(U)):
for ā, b̄ ∈

∏
i∈I Ai, ā ∼=U b̄ iff {i ∈ I : ai = bi} ∈ U .
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BA: an atom

The variety BA is an atom in the lattice of subvarieties of pRL.

pRL is a congruence distributive variety (RL’s have lattice
reducts) so Jònsson’s Lemma applies:
Given a class K ⊆ RLp, the subdirectly irreducible algebras
V(K)SI in the variety generated by K are in HSPU(K).

An ultraproduct A ∈ PU(K) is obtained by taking
■ a product

∏
i∈I Ai of Ai ∈ K and then

■ a quotient
∏

i∈I Ai/ ∼=U by an ultrafilter U over I (maximal
filter on P(U)):
for ā, b̄ ∈

∏
i∈I Ai, ā ∼=U b̄ iff {i ∈ I : ai = bi} ∈ U .

First order formulas persist under ultraproducts.
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BA: an atom

The variety BA is an atom in the lattice of subvarieties of pRL.

pRL is a congruence distributive variety (RL’s have lattice
reducts) so Jònsson’s Lemma applies:
Given a class K ⊆ RLp, the subdirectly irreducible algebras
V(K)SI in the variety generated by K are in HSPU(K).

An ultraproduct A ∈ PU(K) is obtained by taking
■ a product

∏
i∈I Ai of Ai ∈ K and then

■ a quotient
∏

i∈I Ai/ ∼=U by an ultrafilter U over I (maximal
filter on P(U)):
for ā, b̄ ∈

∏
i∈I Ai, ā ∼=U b̄ iff {i ∈ I : ai = bi} ∈ U .

First order formulas persist under ultraproducts.

Now, HSPU(2) = {2,1}, hence (V(2))SI = {2}.

Recall that V = V(VSI).
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Fin. gen. atoms

We define ⊤u = u⊤ = u.

Note that Tn is strictly sim-
ple (has no non-trivial subal-
gebras or homomorphic im-
ages).

So, V(Tn) is an atom of
Λ(RL).

Moreover, all these atoms
are distinct and Λ(RL) has
at least denumerably many
atoms.

⊤

1

⊤\1 u

u2

u3...
un

Tn
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #33

Cancellative atoms

Left cancellativity (ab = ac⇒ b = c) can be written
equationally: x\(xy) = y. Right cancellativity is (yx)/x = y.
CanRL denotes the variety of cancellative RL’s.
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Cancellative atoms

Left cancellativity (ab = ac⇒ b = c) can be written
equationally: x\(xy) = y. Right cancellativity is (yx)/x = y.
CanRL denotes the variety of cancellative RL’s.

Prop. There are only 2 cancellative atoms: V(Z) and V(Z−).
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Cancellative atoms

Left cancellativity (ab = ac⇒ b = c) can be written
equationally: x\(xy) = y. Right cancellativity is (yx)/x = y.
CanRL denotes the variety of cancellative RL’s.

Prop. There are only 2 cancellative atoms: V(Z) and V(Z−).

The negative cone of a RL A = (A,∧,∨, ·, \, /, 1) is the RL

A
− = (A−,∧,∨, ·, \A

−

, /A
−

, 1), where A− = {a ∈ A : a ≤ 1},

a\A
−

b = (a\b) ∧ 1 and b/A
−

a = (b/a) ∧ 1.
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Cancellative atoms

Left cancellativity (ab = ac⇒ b = c) can be written
equationally: x\(xy) = y. Right cancellativity is (yx)/x = y.
CanRL denotes the variety of cancellative RL’s.

Prop. There are only 2 cancellative atoms: V(Z) and V(Z−).

Let L ∈ CanRL. For a ≤ 1, we have 1 ≤ 1/a.

Claim: If ∃a < 1 with 1/a = 1, then Sg(a) ∼= Z
−.

Since a < 1, we get an+1 < an, for all n ∈ N, by order
preservation and cancellativity. Moreover, ak+m/am = ak and
am/am+k = 1, for all m, k ∈ N.

Claim: If for all x < 1, we have 1 < 1/x, then L is an ℓ-group.

For a ∈ L set x = (1/a)a. Note that x ≤ 1, and if x < 1, then
1/x = 1/(1/a)a = (1/a)/(1/a) = 1, cancellativity; so x = 1.

The negative cone of a RL A = (A,∧,∨, ·, \, /, 1) is the RL

A
− = (A−,∧,∨, ·, \A

−

, /A
−

, 1), where A− = {a ∈ A : a ≤ 1},

a\A
−

b = (a\b) ∧ 1 and b/A
−

a = (b/a) ∧ 1.
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Idempotent rep. atoms

For S ⊆ Z, we define

aibi = ai, if i ∈ S and
aibi = bi, if i 6∈ S.

Although, we may have

■ S 6= T , but NS
∼= NT

■ NS 6∼= NT , but
V(NS) = V(NT )

■ V(NS) is not an atom

we can prove that there
are continuum many atoms
V(NS).

...
a−1

a0

a1

...
1...
b1

b0

b−1

...
NS
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Subvariety lattice (joins)
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Representable RL’s

A residuated lattice is called representable (or semi-linear) if
it is a subdirect product of totally ordered RL’s. RRL denotes
the class of representable RL’s.
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Representable RL’s

A residuated lattice is called representable (or semi-linear) if
it is a subdirect product of totally ordered RL’s. RRL denotes
the class of representable RL’s.

Recall that a totally ordered RL satisfies the first-order
formula (∀x, y)(x ≤ y or y ≤ x) [(∀x, y)(1 ≤ x\y or 1 ≤ y\x)]
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Representable RL’s

A residuated lattice is called representable (or semi-linear) if
it is a subdirect product of totally ordered RL’s. RRL denotes
the class of representable RL’s.

Recall that a totally ordered RL satisfies the first-order
formula (∀x, y)(x ≤ y or y ≤ x) [(∀x, y)(1 ≤ x\y or 1 ≤ y\x)]

Representable Heyting algebras form a variety axiomatized
by 1 = (x→ y) ∨ (y → x).
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Representable RL’s

A residuated lattice is called representable (or semi-linear) if
it is a subdirect product of totally ordered RL’s. RRL denotes
the class of representable RL’s.

Recall that a totally ordered RL satisfies the first-order
formula (∀x, y)(x ≤ y or y ≤ x) [(∀x, y)(1 ≤ x\y or 1 ≤ y\x)]

Representable Heyting algebras form a variety axiomatized
by 1 = (x→ y) ∨ (y → x).

Representable commutative RL’s form a variety axiomatized
by 1 = (x→ y)∧1 ∨ (y → x)∧1.
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Representable RL’s

A residuated lattice is called representable (or semi-linear) if
it is a subdirect product of totally ordered RL’s. RRL denotes
the class of representable RL’s.

Recall that a totally ordered RL satisfies the first-order
formula (∀x, y)(x ≤ y or y ≤ x) [(∀x, y)(1 ≤ x\y or 1 ≤ y\x)]

Representable Heyting algebras form a variety axiomatized
by 1 = (x→ y) ∨ (y → x).

Representable commutative RL’s form a variety axiomatized
by 1 = (x→ y)∧1 ∨ (y → x)∧1.

RRL is a variety axiomatized by 1 = γ1(x\y) ∨ γ2(y\x).

Goal : Given a class K of RL’s axiomatized by a set of
positive universal first-order formulas (PUF’s), provide an
axiomatization for V(K).
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Joins

The meet of two varieties in Λ(RLp) is their intersection.

Also, if V1 is axiomatized by E1 and V2 by E2, then V1 ∧ V2 is
axiomatized by E1 ∪ E2.
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Joins

The meet of two varieties in Λ(RLp) is their intersection.

Also, if V1 is axiomatized by E1 and V2 by E2, then V1 ∧ V2 is
axiomatized by E1 ∪ E2.

On the other hand, the join of two varieties is the variety
generated by their union.

Also, if V1 is axiomatized by E1 and V2 by E2, then V1 ∨ V2

may not be axiomatized by E1 ∩ E2.
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Joins

The meet of two varieties in Λ(RLp) is their intersection.

Also, if V1 is axiomatized by E1 and V2 by E2, then V1 ∧ V2 is
axiomatized by E1 ∪ E2.

On the other hand, the join of two varieties is the variety
generated by their union.

Also, if V1 is axiomatized by E1 and V2 by E2, then V1 ∨ V2

may not be axiomatized by E1 ∩ E2.

Goals

■ Find an axiomatization of V1 ∨ V2 in terms of E1 and E2.
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Joins

The meet of two varieties in Λ(RLp) is their intersection.

Also, if V1 is axiomatized by E1 and V2 by E2, then V1 ∧ V2 is
axiomatized by E1 ∪ E2.

On the other hand, the join of two varieties is the variety
generated by their union.

Also, if V1 is axiomatized by E1 and V2 by E2, then V1 ∨ V2

may not be axiomatized by E1 ∩ E2.

Goals

■ Find an axiomatization of V1 ∨ V2 in terms of E1 and E2.

■ Find situations where: if E1 and E2 are finite, then V1 ∨ V2

is finitely axiomatized.

■ Find V such that its finitely axiomatized subvarieties form a
lattice.
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Finite basis

If V is a congruence distributive variety of finite type and
VFSI is strictly elementary, then V is finitely axiomatized.
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Finite basis

If V is a congruence distributive variety of finite type and
VFSI is strictly elementary, then V is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence.
Finitely SI: ∆ is not the intersection of two non-trivial
congruences.
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Finite basis

If V is a congruence distributive variety of finite type and
VFSI is strictly elementary, then V is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence.
Finitely SI: ∆ is not the intersection of two non-trivial
congruences.

Cor. For every variety V of RL’s, if VFSI is strictly elementary,
then the finitely axiomatized subvarieties of V form a lattice.

Pf. For finitely axiomatized subvarieties V1, V2,
(V1 ∨ V2)FSI = (V1 ∪ V2)FSI is strictly elementary.
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Finite basis

If V is a congruence distributive variety of finite type and
VFSI is strictly elementary, then V is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence.
Finitely SI: ∆ is not the intersection of two non-trivial
congruences.

Cor. For every variety V of RL’s, if VFSI is strictly elementary,
then the finitely axiomatized subvarieties of V form a lattice.

Pf. For finitely axiomatized subvarieties V1, V2,
(V1 ∨ V2)FSI = (V1 ∪ V2)FSI is strictly elementary.

Let V1, V2 be subvarieties of RL axiomatized by E1, E2,
respectively, where E1, E2 have no variables in common.
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Finite basis

If V is a congruence distributive variety of finite type and
VFSI is strictly elementary, then V is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence.
Finitely SI: ∆ is not the intersection of two non-trivial
congruences.

Cor. For every variety V of RL’s, if VFSI is strictly elementary,
then the finitely axiomatized subvarieties of V form a lattice.

Pf. For finitely axiomatized subvarieties V1, V2,
(V1 ∨ V2)FSI = (V1 ∪ V2)FSI is strictly elementary.

Let V1, V2 be subvarieties of RL axiomatized by E1, E2,
respectively, where E1, E2 have no variables in common.

The class V1 ∪ V2 is axiomatized by the universal closure of
(AND E1) or (AND E2), over infinitary logic, which is equivalent
to the set {∀∀(ε1 or ε2) : ε1 ∈ E1, ε2 ∈ E2} of positive
universal first-order formulas (PUFs).
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FSI

In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = γ(a) ∨ γ′(b), for all all iterrated
conjugates γ, γ′, then a = 1 or b = 1.
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FSI

In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = γ(a) ∨ γ′(b), for all all iterrated
conjugates γ, γ′, then a = 1 or b = 1.

Thm. A RL is FSI iff 1 is weakly join-irreducible.



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Representable RL’s

Joins

Finite basis

FSI

PUF’s

PUF and equations

Axiomatization

RRL

Finite axiomatization

Elementarity

Applications

Logic

Representation - Frames

Applications of frames

Undecidability

References
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FSI

In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = γ(a) ∨ γ′(b), for all all iterrated
conjugates γ, γ′, then a = 1 or b = 1.

Thm. A RL is FSI iff 1 is weakly join-irreducible.

(⇐) Let F,G be CNS with F ∩G = {1}. For all a ∈ F− and
b ∈ G−, 1 = γ(a) ∨ γ′(b), for all iterated conjugates,
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FSI

In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = γ(a) ∨ γ′(b), for all all iterrated
conjugates γ, γ′, then a = 1 or b = 1.

Thm. A RL is FSI iff 1 is weakly join-irreducible.

(⇐) Let F,G be CNS with F ∩G = {1}. For all a ∈ F− and
b ∈ G−, 1 = γ(a) ∨ γ′(b), for all iterated conjugates, because
if γ(a), γ′(b) ≤ u, then u ∧ 1 ∈ F ∩G = {1}, so 1 ≤ u. Since 1
is weakly join-irreducible, a = 1 or b = 1.
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FSI

In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = γ(a) ∨ γ′(b), for all all iterrated
conjugates γ, γ′, then a = 1 or b = 1.

Thm. A RL is FSI iff 1 is weakly join-irreducible.

(⇐) Let F,G be CNS with F ∩G = {1}. For all a ∈ F− and
b ∈ G−, 1 = γ(a) ∨ γ′(b), for all iterated conjugates, because
if γ(a), γ′(b) ≤ u, then u ∧ 1 ∈ F ∩G = {1}, so 1 ≤ u. Since 1
is weakly join-irreducible, a = 1 or b = 1.

(⇒) Let a, b be negative elements and assume that
u ∈ CNS−(a) ∩ CNS−(b).

If
1 = γ(a) ∨ γ′(b), for all iterated conjugates,
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FSI

In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = γ(a) ∨ γ′(b), for all all iterrated
conjugates γ, γ′, then a = 1 or b = 1.

Thm. A RL is FSI iff 1 is weakly join-irreducible.

(⇐) Let F,G be CNS with F ∩G = {1}. For all a ∈ F− and
b ∈ G−, 1 = γ(a) ∨ γ′(b), for all iterated conjugates, because
if γ(a), γ′(b) ≤ u, then u ∧ 1 ∈ F ∩G = {1}, so 1 ≤ u. Since 1
is weakly join-irreducible, a = 1 or b = 1.

(⇒) Let a, b be negative elements and assume that
u ∈ CNS−(a) ∩ CNS−(b). Then there exist products of
iterated conjugates p, q of a, b, resp., such that p, q ≤ u. If
1 = γ(a) ∨ γ′(b), for all iterated conjugates,
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FSI

In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = γ(a) ∨ γ′(b), for all all iterrated
conjugates γ, γ′, then a = 1 or b = 1.

Thm. A RL is FSI iff 1 is weakly join-irreducible.

(⇐) Let F,G be CNS with F ∩G = {1}. For all a ∈ F− and
b ∈ G−, 1 = γ(a) ∨ γ′(b), for all iterated conjugates, because
if γ(a), γ′(b) ≤ u, then u ∧ 1 ∈ F ∩G = {1}, so 1 ≤ u. Since 1
is weakly join-irreducible, a = 1 or b = 1.

(⇒) Let a, b be negative elements and assume that
u ∈ CNS−(a) ∩ CNS−(b). Then there exist products of
iterated conjugates p, q of a, b, resp., such that p, q ≤ u. If
1 = γ(a) ∨ γ′(b), for all iterated conjugates, then 1 = p ∨ q.
Thus, u = 1 and CNS−(a) ∩ CNS−(b) = {1}.
Since A is FSI, CNS−(a) = {1} or CNS−(b) = {1}, hence
a = 1 of b = 1.
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PUF’s

Every PUF is equivalent to (the universal closure of) a
disjunction of conjunctions of equations.
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #40

PUF’s

Every PUF is equivalent to (the universal closure of) a
disjunction of conjunctions of equations.

s = t iff (s ≤ t and t ≤ s) iff (1 ≤ s\t and 1 ≤ t\s).
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PUF’s

Every PUF is equivalent to (the universal closure of) a
disjunction of conjunctions of equations.

s = t iff (s ≤ t and t ≤ s) iff (1 ≤ s\t and 1 ≤ t\s).

Every conjunction of equations 1 ≤ pi is equivalanent to the
equation 1 ≤ p1 ∧ · · · ∧ pn.
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PUF’s

Every PUF is equivalent to (the universal closure of) a
disjunction of conjunctions of equations.

s = t iff (s ≤ t and t ≤ s) iff (1 ≤ s\t and 1 ≤ t\s).

Every conjunction of equations 1 ≤ pi is equivalanent to the
equation 1 ≤ p1 ∧ · · · ∧ pn.

So, every PUF is equivalent to a formula of the form

α = ∀x (1 ≤ r1 or · · · or 1 ≤ rk)
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PUF’s

Every PUF is equivalent to (the universal closure of) a
disjunction of conjunctions of equations.

s = t iff (s ≤ t and t ≤ s) iff (1 ≤ s\t and 1 ≤ t\s).

Every conjunction of equations 1 ≤ pi is equivalanent to the
equation 1 ≤ p1 ∧ · · · ∧ pn.

So, every PUF is equivalent to a formula of the form

α = ∀x (1 ≤ r1 or · · · or 1 ≤ rk)

Let α̃0 be (r1)∧1 ∨ · · · ∨ (rk)∧1 = 1.
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PUF’s

Every PUF is equivalent to (the universal closure of) a
disjunction of conjunctions of equations.

s = t iff (s ≤ t and t ≤ s) iff (1 ≤ s\t and 1 ≤ t\s).

Every conjunction of equations 1 ≤ pi is equivalanent to the
equation 1 ≤ p1 ∧ · · · ∧ pn.

So, every PUF is equivalent to a formula of the form

α = ∀x (1 ≤ r1 or · · · or 1 ≤ rk)

Let α̃0 be (r1)∧1 ∨ · · · ∨ (rk)∧1 = 1.

Also, for m > 0 and ℵ0 fresh variables Y , we define α̃m as
the set of all equations of the form

γ1 ∨ · · · ∨ γk = 1

where γi ∈ Γm
Y (ri) for each i ∈ {1, . . . , k}. Set α̃ =

⋃
n∈ω α̃n.

Here Γm
Y (a) = {πy1

πy2
· · ·πym

(a∧1) | yi ∈ Y, πyi
∈ {λyi

, ρyi
}}.
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PUF and equations

Thm. For a PUF α and a FSI RL A, A |= α iff A |= α̃.

α = ∀x (1 ≤ r1 or · · · or 1 ≤ rk)

α̃ = {γ1 ∨ · · · ∨ γk = 1 | γi ∈ ΓY (ri)}
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PUF and equations

Thm. For a PUF α and a FSI RL A, A |= α iff A |= α̃.

Pf. (⇒) If ā are elements in A, then 1 ≤ ri(ā) for some i.
So, γ(ri(ā)∧1) = 1, for all γ; hence,
γ1(r1(ā)∧1) ∨ · · · ∨ γk(rk(ā)∧1) = 1.

α = ∀x (1 ≤ r1 or · · · or 1 ≤ rk)

α̃ = {γ1 ∨ · · · ∨ γk = 1 | γi ∈ ΓY (ri)}
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PUF and equations

Thm. For a PUF α and a FSI RL A, A |= α iff A |= α̃.

Pf. (⇒) If ā are elements in A, then 1 ≤ ri(ā) for some i.
So, γ(ri(ā)∧1) = 1, for all γ; hence,
γ1(r1(ā)∧1) ∨ · · · ∨ γk(rk(ā)∧1) = 1.

(⇐) We have 1 = γ1(r1(ā)∧1) ∨ · · · ∨ γk(rk(ā)∧1), for all γi.
Since A is FSI, 1 is weakly join irreducible, so ri(ā)∧1 = 1, for
some i; i.e., ri(ā) ≤ 1.

α = ∀x (1 ≤ r1 or · · · or 1 ≤ rk)

α̃ = {γ1 ∨ · · · ∨ γk = 1 | γi ∈ ΓY (ri)}
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Axiomatization

Thm. Let K be a class of RLs axiomatixed by a set Ψ of PUF.
Then V(K) is axiomatized, relative to RL, by Ψ̃.
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Axiomatization

Thm. Let K be a class of RLs axiomatixed by a set Ψ of PUF.
Then V(K) is axiomatized, relative to RL, by Ψ̃.

Pf. Let A ∈ RLSI . By congruence distributivity and Jónsson’s
Lemma, A ∈ V(K) iff A ∈ HSPU(K). Furthermore, as PUFs
are preserved under H, S and PU, A ∈ HSPU(K) iff A ∈ K.
Finally, A ∈ K iff A |= Ψ iff A |= Ψ̃.
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Axiomatization

Thm. Let K be a class of RLs axiomatixed by a set Ψ of PUF.
Then V(K) is axiomatized, relative to RL, by Ψ̃.

Pf. Let A ∈ RLSI . By congruence distributivity and Jónsson’s
Lemma, A ∈ V(K) iff A ∈ HSPU(K). Furthermore, as PUFs
are preserved under H, S and PU, A ∈ HSPU(K) iff A ∈ K.
Finally, A ∈ K iff A |= Ψ iff A |= Ψ̃.

Let V1, V2 be subvarieties of RL axiomatized by E1, E2,
respectively, where E1, E2 have no variables in common.
The class V1 ∪ V2 is axiomatized by the set of PUFs
Ψ = {∀∀(1 ≤ r1 or 1 ≤ r2) | (1 ≤ r1) ∈ E1, (1 ≤ r2) ∈ E2}.
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Axiomatization

Thm. Let K be a class of RLs axiomatixed by a set Ψ of PUF.
Then V(K) is axiomatized, relative to RL, by Ψ̃.

Pf. Let A ∈ RLSI . By congruence distributivity and Jónsson’s
Lemma, A ∈ V(K) iff A ∈ HSPU(K). Furthermore, as PUFs
are preserved under H, S and PU, A ∈ HSPU(K) iff A ∈ K.
Finally, A ∈ K iff A |= Ψ iff A |= Ψ̃.

Let V1, V2 be subvarieties of RL axiomatized by E1, E2,
respectively, where E1, E2 have no variables in common.
The class V1 ∪ V2 is axiomatized by the set of PUFs
Ψ = {∀∀(1 ≤ r1 or 1 ≤ r2) | (1 ≤ r1) ∈ E1, (1 ≤ r2) ∈ E2}.

Thm. V1 ∨ V2 is axiomatized by

Ψ̃ = {γ1(r1)∨γ2(r2) = 1 | (1 ≤ r1) ∈ E1, (1 ≤ r2) ∈ E2, γi ∈ Γ}
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RRL

Thm. The variety RRL generated by all totally ordered
residuated lattices is axiomatized by the 4-variable identity
λz((x ∨ y)\x) ∨ ρw((x ∨ y)\y) = 1.
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RRL

Thm. The variety RRL generated by all totally ordered
residuated lattices is axiomatized by the 4-variable identity
λz((x ∨ y)\x) ∨ ρw((x ∨ y)\y) = 1.

Pf. A RL is a chain iff it satisfies ∀x, y(x ≤ y or y ≤ x), or

∀x, y(1 ≤ (x ∨ y)\x or 1 ≤ (x ∨ y)\y).

Thus, RRL is axiomatized by the identities

1 = γ1((x ∨ y)\x) ∨ γ2((x ∨ y)\y); γ1, γ2 ∈ Γ (Γ)
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RRL

Thm. The variety RRL generated by all totally ordered
residuated lattices is axiomatized by the 4-variable identity
λz((x ∨ y)\x) ∨ ρw((x ∨ y)\y) = 1.

Pf. A RL is a chain iff it satisfies ∀x, y(x ≤ y or y ≤ x), or

∀x, y(1 ≤ (x ∨ y)\x or 1 ≤ (x ∨ y)\y).

Thus, RRL is axiomatized by the identities

1 = γ1((x ∨ y)\x) ∨ γ2((x ∨ y)\y); γ1, γ2 ∈ Γ (Γ)

So, RRL satisfies the identity

λz((x ∨ y)\x) ∨ ρw((x ∨ y)\y) = 1. (λ, ρ)



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Representable RL’s

Joins

Finite basis

FSI

PUF’s

PUF and equations

Axiomatization

RRL

Finite axiomatization

Elementarity

Applications

Logic

Representation - Frames

Applications of frames

Undecidability

References
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RRL

Thm. The variety RRL generated by all totally ordered
residuated lattices is axiomatized by the 4-variable identity
λz((x ∨ y)\x) ∨ ρw((x ∨ y)\y) = 1.

Pf. A RL is a chain iff it satisfies ∀x, y(x ≤ y or y ≤ x), or

∀x, y(1 ≤ (x ∨ y)\x or 1 ≤ (x ∨ y)\y).

Thus, RRL is axiomatized by the identities

1 = γ1((x ∨ y)\x) ∨ γ2((x ∨ y)\y); γ1, γ2 ∈ Γ (Γ)

So, RRL satisfies the identity

λz((x ∨ y)\x) ∨ ρw((x ∨ y)\y) = 1. (λ, ρ)

Conversely, the variety axiomatized by this identity satisfies

x∨y = 1 ⇒ λz(x)∨y = 1 x∨y = 1 ⇒ x∨ρw(y) = 1. (imp)

By repeated applications of (imp) on (λ, ρ), we get (Γ).
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Finite axiomatization

Let β = ∀x1 ∀x2 (1 ≤ x1 or 1 ≤ x2) and set Bm ⇒ Bm+1 =

∀x1 ∀x2 [ (∀ y ∀z AND β̃m ) =⇒ (∀ y ∀z AND β̃m+1 ) ]
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Finite axiomatization

Let β = ∀x1 ∀x2 (1 ≤ x1 or 1 ≤ x2) and set Bm ⇒ Bm+1 =

∀x1 ∀x2 [ (∀ y ∀z AND β̃m ) =⇒ (∀ y ∀z AND β̃m+1 ) ]

Thm. Let V1 and V2 be two varieties of RLs that satisfy
Bm ⇒ Bm+1. Then
1. V1 ∨ V2 is axiomatized by Ψ̃m + a finite set of equations.
2. If V1 and V2 are finitely axiomatized then so is V1 ∨ V2
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Finite axiomatization

Let β = ∀x1 ∀x2 (1 ≤ x1 or 1 ≤ x2) and set Bm ⇒ Bm+1 =

∀x1 ∀x2 [ (∀ y ∀z AND β̃m ) =⇒ (∀ y ∀z AND β̃m+1 ) ]

Thm. Let V1 and V2 be two varieties of RLs that satisfy
Bm ⇒ Bm+1. Then
1. V1 ∨ V2 is axiomatized by Ψ̃m + a finite set of equations.
2. If V1 and V2 are finitely axiomatized then so is V1 ∨ V2

Pf. By congruence distributivity (V1 ∨ V2)FSI ⊆ V1 ∪ V2, so
(V1 ∨ V2)FSI satisfies Bm ⇒ Bm+1. V1 ∨ V2 also satisfies
Bm ⇒ Bm+1, because the latter is a special Horn sentence
(Lyndon) and is preserved under subdirect products.
By compactness of FOL, Bm ⇒ Bm+1 is a consequence of a
finite set B of equations, valid in V1 ∨ V2.
Note that V1 ∨ V2 is axiomatized by Ψ̃ and, using
Bm ⇒ Bm+1, Ψ̃m implies Ψ̃n for all n > m.
Hence, V1 ∨ V2 is axiomatized by Ψ̃m ∪B.
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Elementarity

Thm. For any variety V of RLs, VFSI is an elementary class
iff it satisfies Bm ⇒ Bm+1 for some m.
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #45

Elementarity

Thm. For any variety V of RLs, VFSI is an elementary class
iff it satisfies Bm ⇒ Bm+1 for some m.

Cor. For every variety V of RLs, if VFSI is elementary, then
the finitely axiomatized subvarieties of V form a lattice.
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Applications

RRLs satisfy B0 ⇒ B1.

x ∨ y = 1 ⇒ γ1(x) ∨ γ2(y) = 1, for all γ1, γ2 ∈ Γ1
Y .
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Applications

RRLs satisfy B0 ⇒ B1.

x ∨ y = 1 ⇒ γ1(x) ∨ γ2(y) = 1, for all γ1, γ2 ∈ Γ1
Y .

ℓ-groups satisfy B1 ⇒ B2.

For a ≤ 1, we have λz(λw(a)) = λwz(a) and ρz(a) = λz−1(a).
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Applications

RRLs satisfy B0 ⇒ B1.

x ∨ y = 1 ⇒ γ1(x) ∨ γ2(y) = 1, for all γ1, γ2 ∈ Γ1
Y .

ℓ-groups satisfy B1 ⇒ B2.

For a ≤ 1, we have λz(λw(a)) = λwz(a) and ρz(a) = λz−1(a).

Subcommutative RSs satisfy B0 ⇒ B1.

k-subcommutative RSs are defined by (x ∧ 1)ky = y(x ∧ 1)k.
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Logic
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A Hilbert-style axiomatization

(MP) {φ, φ→ ψ} ⊢HLe
ψ

(B) ⊢HLe
(φ→ ψ) → [(ψ → χ) → (φ→ χ)]

(C) ⊢HLe
[φ→ (ψ → χ)] → [ψ → (φ→ χ)]

(I) ⊢HLe
φ→ φ

(AD) {φ, ψ} ⊢HLe
φ ∧ ψ

(CLa) ⊢HLe
(φ ∧ ψ) → φ

(CLb) ⊢HLe
(φ ∧ ψ) → ψ

(CR) ⊢HLe
[(φ→ ψ) ∧ (φ→ χ)] → [φ→ (ψ ∧ χ)]

(DRa) ⊢HLe
ψ → (φ ∨ ψ)

(DRb) ⊢HLe
ψ → (φ ∨ ψ)

(DL) ⊢HLe
((φ→ χ) ∧ (ψ → χ)) → (φ ∨ ψ) → χ

(PR) ⊢HLe
φ→ [ψ → (ψ · φ)]

(PL) ⊢HLe
[ψ → (φ→ χ)] → [(φ · ψ) → χ]

(U) ⊢HLe
1

(UP) ⊢HLe
1 → (φ→ φ)
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Substructural logics

The system HL has the following inference rules:

φ φ\ψ

ψ
(mp)

φ ψ

φ ∧ ψ
(adj)

φ

ψ\φψ
(pn)

φ

ψφ/ψ
(pn)
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Substructural logics

The system HL has the following inference rules:

φ φ\ψ

ψ
(mp)

φ ψ

φ ∧ ψ
(adj)

φ

ψ\φψ
(pn)

φ

ψφ/ψ
(pn)

We write Φ ⊢HL ψ, if the formula ψ is provable in HL from
the set of formulas Φ.

We do not allow substitution instances of formulas in Φ.

For example, p, p\q 6⊢HL r.
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Substructural logics

The system HL has the following inference rules:

φ φ\ψ

ψ
(mp)

φ ψ

φ ∧ ψ
(adj)

φ

ψ\φψ
(pn)

φ

ψφ/ψ
(pn)

We write Φ ⊢HL ψ, if the formula ψ is provable in HL from
the set of formulas Φ.

We do not allow substitution instances of formulas in Φ.

For example, p, p\q 6⊢HL r.

A set of formulas is called a substructural logic if it is closed
under ⊢HL and substitution.
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Substructural logics

The system HL has the following inference rules:

φ φ\ψ

ψ
(mp)

φ ψ

φ ∧ ψ
(adj)

φ

ψ\φψ
(pn)

φ

ψφ/ψ
(pn)

We write Φ ⊢HL ψ, if the formula ψ is provable in HL from
the set of formulas Φ.

We do not allow substitution instances of formulas in Φ.

For example, p, p\q 6⊢HL r.

A set of formulas is called a substructural logic if it is closed
under ⊢HL and substitution.

Substructural logics form a lattice SL.
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Substructural logics

The system HL has the following inference rules:

φ φ\ψ

ψ
(mp)

φ ψ

φ ∧ ψ
(adj)

φ

ψ\φψ
(pn)

φ

ψφ/ψ
(pn)

We write Φ ⊢HL ψ, if the formula ψ is provable in HL from
the set of formulas Φ.

We do not allow substitution instances of formulas in Φ.

For example, p, p\q 6⊢HL r.

A set of formulas is called a substructural logic if it is closed
under ⊢HL and substitution.

Substructural logics form a lattice SL.

In the following we identify (propositional) formulas over
{∧,∨, ·, \, /, 1} with terms over the same signature.
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Algebraic semantics

For a set of equations E ∪ {s = t}, we write

E |=RL s = t

if for every residuated lattice L ∈ RL and for every
homomorphism f : Fm → L,

f(u) = f(v), for all (u = v) ∈ E, implies f(s) = f(t).
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Algebraic semantics

For a set of equations E ∪ {s = t}, we write

E |=RL s = t

if for every residuated lattice L ∈ RL and for every
homomorphism f : Fm → L,

f(u) = f(v), for all (u = v) ∈ E, implies f(s) = f(t).

Theorem. The consequence relation ⊢HL is algebraizable,
with RL as an equivalent algebraic semantics:
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Algebraic semantics

For a set of equations E ∪ {s = t}, we write

E |=RL s = t

if for every residuated lattice L ∈ RL and for every
homomorphism f : Fm → L,

f(u) = f(v), for all (u = v) ∈ E, implies f(s) = f(t).

Theorem. The consequence relation ⊢HL is algebraizable,
with RL as an equivalent algebraic semantics:

1. if Φ ∪ {ψ} is a set of formulas, then
Φ ⊢HL ψ iff {1 ≤ φ|φ ∈ Φ} |=RL 1 ≤ ψ, and
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Algebraic semantics

For a set of equations E ∪ {s = t}, we write

E |=RL s = t

if for every residuated lattice L ∈ RL and for every
homomorphism f : Fm → L,

f(u) = f(v), for all (u = v) ∈ E, implies f(s) = f(t).

Theorem. The consequence relation ⊢HL is algebraizable,
with RL as an equivalent algebraic semantics:

1. if Φ ∪ {ψ} is a set of formulas, then
Φ ⊢HL ψ iff {1 ≤ φ|φ ∈ Φ} |=RL 1 ≤ ψ, and

2. if E ∪ {t = s} is a set of equations, then
E |=RL t = s iff {u\v ∧ v\u|(u = v) ∈ E} ⊢HL t\s ∧ s\t.
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Algebraic semantics

For a set of equations E ∪ {s = t}, we write

E |=RL s = t

if for every residuated lattice L ∈ RL and for every
homomorphism f : Fm → L,

f(u) = f(v), for all (u = v) ∈ E, implies f(s) = f(t).

Theorem. The consequence relation ⊢HL is algebraizable,
with RL as an equivalent algebraic semantics:

1. if Φ ∪ {ψ} is a set of formulas, then
Φ ⊢HL ψ iff {1 ≤ φ|φ ∈ Φ} |=RL 1 ≤ ψ, and

2. if E ∪ {t = s} is a set of equations, then
E |=RL t = s iff {u\v ∧ v\u|(u = v) ∈ E} ⊢HL t\s ∧ s\t.

3. s = t =| |=RL 1 ≤ t\s ∧ s\t



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

A Hilbert system

Substructural logics

Algebraic semantics

Substructural logics (examples)

Substructural logics (examples)

PLDT

Applications to logic

Representation - Frames

Applications of frames

Undecidability

References
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Algebraic semantics

For a set of equations E ∪ {s = t}, we write

E |=RL s = t

if for every residuated lattice L ∈ RL and for every
homomorphism f : Fm → L,

f(u) = f(v), for all (u = v) ∈ E, implies f(s) = f(t).

Theorem. The consequence relation ⊢HL is algebraizable,
with RL as an equivalent algebraic semantics:

1. if Φ ∪ {ψ} is a set of formulas, then
Φ ⊢HL ψ iff {1 ≤ φ|φ ∈ Φ} |=RL 1 ≤ ψ, and

2. if E ∪ {t = s} is a set of equations, then
E |=RL t = s iff {u\v ∧ v\u|(u = v) ∈ E} ⊢HL t\s ∧ s\t.

3. s = t =| |=RL 1 ≤ t\s ∧ s\t

4. φ ⊣⊢HL 1\(1 ∧ φ) ∧ (φ ∧ 1)\1
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Algebraic semantics

For a set of equations E ∪ {s = t}, we write

E |=RL s = t

if for every residuated lattice L ∈ RL and for every
homomorphism f : Fm → L,

f(u) = f(v), for all (u = v) ∈ E, implies f(s) = f(t).

Theorem. The consequence relation ⊢HL is algebraizable,
with RL as an equivalent algebraic semantics:

1. if Φ ∪ {ψ} is a set of formulas, then
Φ ⊢HL ψ iff {1 ≤ φ|φ ∈ Φ} |=RL 1 ≤ ψ, and

2. if E ∪ {t = s} is a set of equations, then
E |=RL t = s iff {u\v ∧ v\u|(u = v) ∈ E} ⊢HL t\s ∧ s\t.

3. s = t =| |=RL 1 ≤ t\s ∧ s\t

4. φ ⊣⊢HL 1\(1 ∧ φ) ∧ (φ ∧ 1)\1

Theorem. SL and Λ(RL) are dually isomorphic.
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Substructural logics (examples)

Note that HL does not admit
(C) [x→ (y → z)] → [y → (x→ z)] (xy = yx)
(K) y → (x→ y) (x ≤ 1)
(W) [x→ (x→ y)] → (x→ y) (x ≤ x2)
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Substructural logics (examples)

Note that HL does not admit
(C) [x→ (y → z)] → [y → (x→ z)] (xy = yx)
(K) y → (x→ y) (x ≤ 1)
(W) [x→ (x→ y)] → (x→ y) (x ≤ x2)

Examples of substructural logics include

■ classical: (C)+(K)+(W)+ ¬¬φ = φ (DN)
■ intuitionistic (Brouwer, Heyting): (C)+(K)+(W)
■ many-valued (Łukasiewicz): (C)+(K)+

(φ→ ψ) → ψ = φ ∨ ψ

■ basic (Hajek): (C)+(K)+ φ(φ→ ψ) = φ ∧ ψ

■ MTL (Esteva, Godo): (C)+(K)+ (φ→ ψ) ∨ (ψ → φ)

■ relevance (Anderson, Belnap): (C)+(W)+ Distrib. (+ DN)
■ (MA)linear logic (Girard): (C)



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

A Hilbert system

Substructural logics

Algebraic semantics

Substructural logics (examples)

Substructural logics (examples)

PLDT

Applications to logic

Representation - Frames

Applications of frames

Undecidability

References
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Substructural logics (examples)

Relevance logic deals with relevance.
p→ (q → q) is not a theorem.
The algebraic models do not satisfy integrality x ≤ 1.
p→ (¬p→ q) [or (p · ¬p) → q] is not a theorem, where
¬p = p→ 0. The algebraic models do not satisfy 0 ≤ x.

Commutativity and distributivity are OK, so we get involutive
CDRL (they satisfy ¬¬x = x).
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Substructural logics (examples)

Relevance logic deals with relevance.
p→ (q → q) is not a theorem.
The algebraic models do not satisfy integrality x ≤ 1.
p→ (¬p→ q) [or (p · ¬p) → q] is not a theorem, where
¬p = p→ 0. The algebraic models do not satisfy 0 ≤ x.

Commutativity and distributivity are OK, so we get involutive
CDRL (they satisfy ¬¬x = x).

Intuitionistic logic deals with provability or constructibility.
The algebraic models are Heyting algebras.
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Substructural logics (examples)

Relevance logic deals with relevance.
p→ (q → q) is not a theorem.
The algebraic models do not satisfy integrality x ≤ 1.
p→ (¬p→ q) [or (p · ¬p) → q] is not a theorem, where
¬p = p→ 0. The algebraic models do not satisfy 0 ≤ x.

Commutativity and distributivity are OK, so we get involutive
CDRL (they satisfy ¬¬x = x).

Intuitionistic logic deals with provability or constructibility.
The algebraic models are Heyting algebras.

Many-valued logic allows different degrees of truth.
[(p ∧ q) → r] ↔ [p→ (q → r)] is not a theorem.
The algebraic models do not satisfy x ∧ y = x · y.
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Substructural logics (examples)

Relevance logic deals with relevance.
p→ (q → q) is not a theorem.
The algebraic models do not satisfy integrality x ≤ 1.
p→ (¬p→ q) [or (p · ¬p) → q] is not a theorem, where
¬p = p→ 0. The algebraic models do not satisfy 0 ≤ x.

Commutativity and distributivity are OK, so we get involutive
CDRL (they satisfy ¬¬x = x).

Intuitionistic logic deals with provability or constructibility.
The algebraic models are Heyting algebras.

Many-valued logic allows different degrees of truth.
[(p ∧ q) → r] ↔ [p→ (q → r)] is not a theorem.
The algebraic models do not satisfy x ∧ y = x · y.

Linear logic is resourse sensitive. p→ (p→ p) [or (p · p) → p]
and p→ (p · p) are not theorems.
The algebraic models do not satisfy contraction x ≤ x2.
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PLDT

The deduction theorem for CPL states:
Σ, ψ ⊢CPL φ iff Σ ⊢CPL ψ → φ
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PLDT

The deduction theorem for CPL states:
Σ, ψ ⊢CPL φ iff Σ ⊢CPL ψ → φ

Theorem. Let Σ ∪ Ψ ∪ {φ} ⊆ FmL and L be a logic.
■ If L is commutative, integral and contractive, then

Σ,Ψ ⊢L φ iff Σ ⊢L (
∧n

i=1 ψi) → φ,
for some n ∈ ω,and ψi ∈ Ψ, i < n.
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PLDT

The deduction theorem for CPL states:
Σ, ψ ⊢CPL φ iff Σ ⊢CPL ψ → φ

Theorem. Let Σ ∪ Ψ ∪ {φ} ⊆ FmL and L be a logic.
■ If L is commutative, integral and contractive, then

Σ,Ψ ⊢L φ iff Σ ⊢L (
∧n

i=1 ψi) → φ,
for some n ∈ ω,and ψi ∈ Ψ, i < n.

■ If L is commutative and integral, then
Σ,Ψ ⊢L φ iff Σ ⊢L (

∏n
i=1 ψi) → φ,

for some n ∈ ω,and ψi ∈ Ψ, i < n.
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PLDT

The deduction theorem for CPL states:
Σ, ψ ⊢CPL φ iff Σ ⊢CPL ψ → φ

Theorem. Let Σ ∪ Ψ ∪ {φ} ⊆ FmL and L be a logic.
■ If L is commutative, integral and contractive, then

Σ,Ψ ⊢L φ iff Σ ⊢L (
∧n

i=1 ψi) → φ,
for some n ∈ ω,and ψi ∈ Ψ, i < n.

■ If L is commutative and integral, then
Σ,Ψ ⊢L φ iff Σ ⊢L (

∏n
i=1 ψi) → φ,

for some n ∈ ω,and ψi ∈ Ψ, i < n.
■ If L is commutative, then

Σ,Ψ ⊢L φ iff Σ ⊢L (
∏n

i=1(ψi ∧ 1)) → φ,
for some n ∈ ω,and ψi ∈ Ψ, i < n.
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #53

PLDT

The deduction theorem for CPL states:
Σ, ψ ⊢CPL φ iff Σ ⊢CPL ψ → φ

Theorem. Let Σ ∪ Ψ ∪ {φ} ⊆ FmL and L be a logic.
■ If L is commutative, integral and contractive, then

Σ,Ψ ⊢L φ iff Σ ⊢L (
∧n

i=1 ψi) → φ,
for some n ∈ ω,and ψi ∈ Ψ, i < n.

■ If L is commutative and integral, then
Σ,Ψ ⊢L φ iff Σ ⊢L (

∏n
i=1 ψi) → φ,

for some n ∈ ω,and ψi ∈ Ψ, i < n.
■ If L is commutative, then

Σ,Ψ ⊢L φ iff Σ ⊢L (
∏n

i=1(ψi ∧ 1)) → φ,
for some n ∈ ω,and ψi ∈ Ψ, i < n.

■ If L is any substructural logic, then
Σ,Ψ ⊢L φ iff Σ ⊢L (

∏n
i=1 γi(ψi))\φ,

for some n ∈ ω, iterated conjugates γi and ψi ∈ Ψ, i < n.
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Applications to logic

■ Hilbert systems (Algebraization)
■ PLDT (Congruence generation for RL’s)
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Applications to logic

■ Hilbert systems (Algebraization)
■ PLDT (Congruence generation for RL’s)
■ Maximal consistent logics (Atoms in Λ(RL))
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Applications to logic

■ Hilbert systems (Algebraization)
■ PLDT (Congruence generation for RL’s)
■ Maximal consistent logics (Atoms in Λ(RL))
■ Axiomatizing intersections of logics (Joins in Λ(RL))
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Applications to logic

■ Hilbert systems (Algebraization)
■ PLDT (Congruence generation for RL’s)
■ Maximal consistent logics (Atoms in Λ(RL))
■ Axiomatizing intersections of logics (Joins in Λ(RL))
■ Translations (Glivenko, Kolmogorov) between logics, e.g.,
⊢CPL φ iff ⊢Int ¬¬φ (Structure of Λ(RL) and nuclei)
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Applications to logic

■ Hilbert systems (Algebraization)
■ PLDT (Congruence generation for RL’s)
■ Maximal consistent logics (Atoms in Λ(RL))
■ Axiomatizing intersections of logics (Joins in Λ(RL))
■ Translations (Glivenko, Kolmogorov) between logics, e.g.,
⊢CPL φ iff ⊢Int ¬¬φ (Structure of Λ(RL) and nuclei)

Algebra ↔ Logic

congruence generation ↔ PLDT
congruence extension ↔ localDT

EDPC ↔ deduction theorem
subreduct axiomatization ↔ strong seperation (Hilbert)

decid. equational th. ↔ decid. provability (Gentzen)
finite generation ↔ cut elimination (+ fin. proof)

amalgamation ↔ interpolation
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Representation - Frames
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Lattice frames

A lattice frame is a structure W = (W,W ′, N) where W and
W ′ are sets and N is a binary relation from W to W ′.

If L is a lattice, WL = (L,L,≤) is a lattice frame.
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Lattice frames

A lattice frame is a structure W = (W,W ′, N) where W and
W ′ are sets and N is a binary relation from W to W ′.

If L is a lattice, WL = (L,L,≤) is a lattice frame.

For X ⊆W and Y ⊆W ′ we define
X⊲ = {b ∈W ′ : x N b, for all x ∈ X}
Y ⊳ = {a ∈W : a N y, for all y ∈ Y }
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Lattice frames

A lattice frame is a structure W = (W,W ′, N) where W and
W ′ are sets and N is a binary relation from W to W ′.

If L is a lattice, WL = (L,L,≤) is a lattice frame.

For X ⊆W and Y ⊆W ′ we define
X⊲ = {b ∈W ′ : x N b, for all x ∈ X}
Y ⊳ = {a ∈W : a N y, for all y ∈ Y }

The maps ⊲ : P(W ) → P(W ′) and ⊳ : P(W ′) → P(W ) form a
Galois connection. The map γN : P(W ) → P(W ), where
γN (X) = X⊲⊳, is a closure operator.
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Lattice frames

A lattice frame is a structure W = (W,W ′, N) where W and
W ′ are sets and N is a binary relation from W to W ′.

If L is a lattice, WL = (L,L,≤) is a lattice frame.

For X ⊆W and Y ⊆W ′ we define
X⊲ = {b ∈W ′ : x N b, for all x ∈ X}
Y ⊳ = {a ∈W : a N y, for all y ∈ Y }

The maps ⊲ : P(W ) → P(W ′) and ⊳ : P(W ′) → P(W ) form a
Galois connection. The map γN : P(W ) → P(W ), where
γN (X) = X⊲⊳, is a closure operator.

Lemma. If L = (L,∧,∨) is a lattice and γ is a cl.op. on L,
then (γ[L],∧,∨γ) is a lattice. [x ∨γ y = γ(x ∨ y).]



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Lattice frames

Residuated frames

Formula hierarchy

FL

Basic substructural logics

Examples of frames (FL)

Examples of frames (FEP)

GN

Gentzen frames

Proof

Applications of frames

Undecidability

References
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Lattice frames

A lattice frame is a structure W = (W,W ′, N) where W and
W ′ are sets and N is a binary relation from W to W ′.

If L is a lattice, WL = (L,L,≤) is a lattice frame.

For X ⊆W and Y ⊆W ′ we define
X⊲ = {b ∈W ′ : x N b, for all x ∈ X}
Y ⊳ = {a ∈W : a N y, for all y ∈ Y }

The maps ⊲ : P(W ) → P(W ′) and ⊳ : P(W ′) → P(W ) form a
Galois connection. The map γN : P(W ) → P(W ), where
γN (X) = X⊲⊳, is a closure operator.

Lemma. If L = (L,∧,∨) is a lattice and γ is a cl.op. on L,
then (γ[L],∧,∨γ) is a lattice. [x ∨γ y = γ(x ∨ y).]

Corollary. If W is a lattice frame then the Galois algebra
W

+ = (γN [P(W )],∩,∪γN
) is a complete lattice.
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Lattice frames

A lattice frame is a structure W = (W,W ′, N) where W and
W ′ are sets and N is a binary relation from W to W ′.

If L is a lattice, WL = (L,L,≤) is a lattice frame.

For X ⊆W and Y ⊆W ′ we define
X⊲ = {b ∈W ′ : x N b, for all x ∈ X}
Y ⊳ = {a ∈W : a N y, for all y ∈ Y }

The maps ⊲ : P(W ) → P(W ′) and ⊳ : P(W ′) → P(W ) form a
Galois connection. The map γN : P(W ) → P(W ), where
γN (X) = X⊲⊳, is a closure operator.

Lemma. If L = (L,∧,∨) is a lattice and γ is a cl.op. on L,
then (γ[L],∧,∨γ) is a lattice. [x ∨γ y = γ(x ∨ y).]

Corollary. If W is a lattice frame then the Galois algebra
W

+ = (γN [P(W )],∩,∪γN
) is a complete lattice.

If L is a lattice, W
+
L

is the Dedekind-MacNeille completion of
L and x 7→ {x}⊳ is an embedding.
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Residuated frames

A residuated frame is a structure W = (W,W ′, N, ◦, 1) where
W and W ′ are sets N ⊆W ×W ′, (W, ◦, 1) is a monoid and
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Residuated frames

A residuated frame is a structure W = (W,W ′, N, ◦, 1) where
W and W ′ are sets N ⊆W ×W ′, (W, ◦, 1) is a monoid and

A nucleus γ on a residuated lattice L is a closure operator on
L such that γ(x)γ(y) ≤ γ(xy) (or γ(γ(x)γ(y)) = γ(xy)).



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Lattice frames

Residuated frames

Formula hierarchy

FL

Basic substructural logics

Examples of frames (FL)

Examples of frames (FEP)

GN

Gentzen frames

Proof

Applications of frames

Undecidability

References
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Residuated frames

A residuated frame is a structure W = (W,W ′, N, ◦, 1) where
W and W ′ are sets N ⊆W ×W ′, (W, ◦, 1) is a monoid and

A nucleus γ on a residuated lattice L is a closure operator on
L such that γ(x)γ(y) ≤ γ(xy) (or γ(γ(x)γ(y)) = γ(xy)).

Theorem. Given a RL L = (L,∧,∨, ·, \, /, 1) and a nucleus
on L, the algebra Lγ = (Lγ ,∧,∨γ , ·γ , \, /, γ(1)), is a
residuated lattice, where x ·γ y = γ(x · y), x ∨γ y = γ(x ∨ y).
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Residuated frames

A residuated frame is a structure W = (W,W ′, N, ◦, 1) where
W and W ′ are sets N ⊆W ×W ′, (W, ◦, 1) is a monoid and
for all x, y ∈W and w ∈W ′ there exist subsets
x 
 w,w � y ⊆W ′ such that

(x ◦ y) N w ⇔ y N (x 
 w) ⇔ x N (w � y)

A nucleus γ on a residuated lattice L is a closure operator on
L such that γ(x)γ(y) ≤ γ(xy) (or γ(γ(x)γ(y)) = γ(xy)).

Theorem. Given a RL L = (L,∧,∨, ·, \, /, 1) and a nucleus
on L, the algebra Lγ = (Lγ ,∧,∨γ , ·γ , \, /, γ(1)), is a
residuated lattice, where x ·γ y = γ(x · y), x ∨γ y = γ(x ∨ y).

Theorem. If W is a frame, then γN is a nucleus on
P(W, ◦, {1}).
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Residuated frames

A residuated frame is a structure W = (W,W ′, N, ◦, 1) where
W and W ′ are sets N ⊆W ×W ′, (W, ◦, 1) is a monoid and
for all x, y ∈W and w ∈W ′ there exist subsets
x 
 w,w � y ⊆W ′ such that

(x ◦ y) N w ⇔ y N (x 
 w) ⇔ x N (w � y)

If L is a RL, WL = (L,L,≤, ·, {1}) is a residuated frame.

A nucleus γ on a residuated lattice L is a closure operator on
L such that γ(x)γ(y) ≤ γ(xy) (or γ(γ(x)γ(y)) = γ(xy)).

Theorem. Given a RL L = (L,∧,∨, ·, \, /, 1) and a nucleus
on L, the algebra Lγ = (Lγ ,∧,∨γ , ·γ , \, /, γ(1)), is a
residuated lattice, where x ·γ y = γ(x · y), x ∨γ y = γ(x ∨ y).

Theorem. If W is a frame, then γN is a nucleus on
P(W, ◦, {1}).
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Residuated frames

A residuated frame is a structure W = (W,W ′, N, ◦, 1) where
W and W ′ are sets N ⊆W ×W ′, (W, ◦, 1) is a monoid and
for all x, y ∈W and w ∈W ′ there exist subsets
x 
 w,w � y ⊆W ′ such that

(x ◦ y) N w ⇔ y N (x 
 w) ⇔ x N (w � y)

If L is a RL, WL = (L,L,≤, ·, {1}) is a residuated frame.

A nucleus γ on a residuated lattice L is a closure operator on
L such that γ(x)γ(y) ≤ γ(xy) (or γ(γ(x)γ(y)) = γ(xy)).

Theorem. Given a RL L = (L,∧,∨, ·, \, /, 1) and a nucleus
on L, the algebra Lγ = (Lγ ,∧,∨γ , ·γ , \, /, γ(1)), is a
residuated lattice, where x ·γ y = γ(x · y), x ∨γ y = γ(x ∨ y).

Theorem. If W is a frame, then γN is a nucleus on
P(W, ◦, {1}).

Corollary. If W is a residuated frame then the Galois
algebra W

+ = P(W, ◦, 1)γN
is a residuated lattice. Moreover,

for WL, x 7→ {x}⊳ is an embedding.
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #58

Formula hierarchy

P3 N3

P2 N2

P1 N1

P0 N0
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■ Polarity {∨, ·, 1}, {∧, \, /}

■ The sets Pn,Nn of formulas are defined by:
(0) P0 = N0 = the set of variables

(P1) Nn ⊆ Pn+1

(P2) α, β ∈ Pn+1 ⇒ α ∨ β, α · β, 1 ∈ Pn+1

(N1) Pn ⊆ Nn+1

(N2) α, β ∈ Nn+1 ⇒ α ∧ β ∈ Nn+1

(N3) α ∈ Pn+1, β ∈ Nn+1 ⇒ α\β, β/α ∈ Nn+1

■ Pn+1 = 〈Nn〉W

,
Q ; Nn+1 = 〈Pn〉V

,Pn+1\,/Pn+1

■ Pn ⊆ Pn+1,Nn ⊆ Nn+1,
⋃
Pn =

⋃
Nn = Fm

■ P1-reduced:
∨∏

pi

■ N1-reduced:
∧

(p1p2 · · · pn\r/q1q2 · · · qm)

p1p2 · · · pnq1q2 · · · qm ≤ r

■ Sequent: a1, a2, . . . , an ⇒ a0

(x⇒ a, a ∈ Fm, x ∈ Fm∗)
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FL

x⇒a y◦a◦z⇒c
y◦x◦z⇒c (cut) a⇒a (Id)

y◦a◦z⇒c

y◦a ∧ b◦z⇒c
(∧Lℓ)

y◦b◦z⇒c

y◦a ∧ b◦z⇒c
(∧Lr) x⇒a x⇒b

x⇒a ∧ b
(∧R)

y◦a◦z⇒c y◦b◦z⇒c

y◦a ∨ b◦z⇒c
(∨L) x⇒a

x⇒a ∨ b
(∨Rℓ) x⇒b

x⇒a ∨ b
(∨Rr)

x⇒a y◦b◦z⇒c

y◦x ◦ (a\b)◦z⇒c
(\L) a ◦ x⇒b

x⇒a\b
(\R)

x⇒a y◦b◦z⇒c

y◦(b/a) ◦ x◦z⇒c
(/L) x ◦ a⇒b

x⇒b/a
(/R)

y◦a ◦ b◦z⇒c

y◦a · b◦z⇒c
(·L)

x⇒a y⇒b

x ◦ y⇒a · b
(·R)

y ◦ z⇒a

y◦1◦z⇒a
(1L)

ε⇒1
(1R)

where a, b, c ∈ Fm, x, y, z ∈ Fm∗.
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FL

x⇒a u[a]⇒c

u[x]⇒c
(cut)

a⇒a (Id)

u[a]⇒c

u[a ∧ b]⇒c
(∧Lℓ)

u[b]⇒c

u[a ∧ b]⇒c
(∧Lr) x⇒a x⇒b

x⇒a ∧ b
(∧R)

u[a]⇒c u[b]⇒c

u[a ∨ b]⇒c
(∨L) x⇒a

x⇒a ∨ b
(∨Rℓ) x⇒b

x⇒a ∨ b
(∨Rr)

x⇒a u[b]⇒c

u[x ◦ (a\b)]⇒c
(\L) a ◦ x⇒b

x⇒a\b
(\R)

x⇒a u[b]⇒c

u[(b/a) ◦ x]⇒c
(/L) x ◦ a⇒b

x⇒b/a
(/R)

u[a ◦ b]⇒c

u[a · b]⇒c
(·L)

x⇒a y⇒b

x ◦ y⇒a · b
(·R)

|u|⇒a

u[1]⇒a
(1L)

ε⇒1
(1R)
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S,
we write S ⊢FL s.
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S,
we write S ⊢FL s.

u[x ◦ y] ⇒ c

u[y ◦ x] ⇒ c
(e)

(exchange) xy ≤ yx
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S,
we write S ⊢FL s.

u[x ◦ y] ⇒ c

u[y ◦ x] ⇒ c
(e)

(exchange) xy ≤ yx

u[x ◦ x] ⇒ c

u[x] ⇒ c
(c)

(contraction) x ≤ x2
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S,
we write S ⊢FL s.

u[x ◦ y] ⇒ c

u[y ◦ x] ⇒ c
(e)

(exchange) xy ≤ yx

u[x ◦ x] ⇒ c

u[x] ⇒ c
(c)

(contraction) x ≤ x2

|u| ⇒ c

u[x] ⇒ c
(i)

(integrality) x ≤ 1
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S,
we write S ⊢FL s.

u[x ◦ y] ⇒ c

u[y ◦ x] ⇒ c
(e)

(exchange) xy ≤ yx

u[x ◦ x] ⇒ c

u[x] ⇒ c
(c)

(contraction) x ≤ x2

|u| ⇒ c

u[x] ⇒ c
(i)

(integrality) x ≤ 1

We write FLec for FL + (e) + (c).
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S,
we write S ⊢FL s.

u[x ◦ y] ⇒ c

u[y ◦ x] ⇒ c
(e)

(exchange) xy ≤ yx

u[x ◦ x] ⇒ c

u[x] ⇒ c
(c)

(contraction) x ≤ x2

|u| ⇒ c

u[x] ⇒ c
(i)

(integrality) x ≤ 1

We write FLec for FL + (e) + (c).

Theorem. The systems HL and FL are equivalent via the
maps s(ψ) = ( ⇒ ψ) and
φ(a1, a2, . . . , an ⇒ a) = an\(. . . (a2\(a1\a)) . . . );
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Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).

We define the frame WFL, where
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Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).

We define the frame WFL, where
■ (W, ◦, ε) to be the free monoid over the set Fm of all

formulas
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Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).

We define the frame WFL, where
■ (W, ◦, ε) to be the free monoid over the set Fm of all

formulas
■ W ′ = SW × Fm, where SW is the set of all unary linear

polynomials u[x] = y◦x◦z of W , and
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Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).

We define the frame WFL, where
■ (W, ◦, ε) to be the free monoid over the set Fm of all

formulas
■ W ′ = SW × Fm, where SW is the set of all unary linear

polynomials u[x] = y◦x◦z of W , and
■ x N (u, a) iff ⊢FL u[x] ⇒ a.
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Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).

We define the frame WFL, where
■ (W, ◦, ε) to be the free monoid over the set Fm of all

formulas
■ W ′ = SW × Fm, where SW is the set of all unary linear

polynomials u[x] = y◦x◦z of W , and
■ x N (u, a) iff ⊢FL u[x] ⇒ a.

For
(u, a) � x = {(u[_ ◦ x], a)} and x 
 (u, a) = {(u[x ◦ _], a)},

we have
x ◦ yN(u, a) iff ⊢FL u[x ◦ y] ⇒ a

iff ⊢FL u[x◦y] ⇒ a

iff xN(u[_ ◦ y], a)

iff yN(u[x ◦ _], a).
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Examples of frames (FEP)

Let A be a residuated lattice and B a partial subalgebra of A.

We define the frame WA,B, where
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Examples of frames (FEP)

Let A be a residuated lattice and B a partial subalgebra of A.

We define the frame WA,B, where
■ (W, ·, 1) to be the submonoid of A generated by B,
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Examples of frames (FEP)

Let A be a residuated lattice and B a partial subalgebra of A.

We define the frame WA,B, where
■ (W, ·, 1) to be the submonoid of A generated by B,
■ W ′ = SB ×B, where SW is the set of all unary linear

polynomials u[x] = y◦x◦z of (W, ·, 1), and



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Lattice frames

Residuated frames

Formula hierarchy

FL

Basic substructural logics

Examples of frames (FL)

Examples of frames (FEP)

GN

Gentzen frames

Proof

Applications of frames

Undecidability

References
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Examples of frames (FEP)

Let A be a residuated lattice and B a partial subalgebra of A.

We define the frame WA,B, where
■ (W, ·, 1) to be the submonoid of A generated by B,
■ W ′ = SB ×B, where SW is the set of all unary linear

polynomials u[x] = y◦x◦z of (W, ·, 1), and
■ x N (u, b) by u[x] ≤A b.
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Examples of frames (FEP)

Let A be a residuated lattice and B a partial subalgebra of A.

We define the frame WA,B, where
■ (W, ·, 1) to be the submonoid of A generated by B,
■ W ′ = SB ×B, where SW is the set of all unary linear

polynomials u[x] = y◦x◦z of (W, ·, 1), and
■ x N (u, b) by u[x] ≤A b.

For
(u, a) � x = {(u[_ · x], a)} and x 
 (u, a) = {(u[x · _], a)},

we have
x · yN(u, a) iff u[x · y] ≤ a

iff xN(u[_ · y], a)

iff yN(u[x · _], a).
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GN

xNa aNz
xNz

(CUT)
aNa

(Id)

xNa bNz
x ◦ (a\b)Nz

(\L) a ◦ xNb
xNa\b

(\R)

xNa bNz
(b/a) ◦ xNz

(/L) x ◦ aNb
xNb/a

(/R)

a ◦ bNz
a · bNz

(·L)
xNa yNb

x ◦ yNa · b
(·R)

aNz
a ∧ bNz

(∧Lℓ) bNz
a ∧ bNz

(∧Lr) xNa xNb
xNa ∧ b

(∧R)

aNz bNz
a ∨ bNz

(∨L) xNa
xNa ∨ b

(∨Rℓ) xNb
xNa ∨ b

(∨Rr)

εNz
1Nz

(1L)
εN1

(1R)
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Gentzen frames

The following properties hold for WL, WFL and WA,B:

1. W is a residuated frame

2. B is a (partial) algebra of the same type, (B = L,Fm,B)

3. B generates (W, ◦, ε) (as a monoid)

4. W ′ contains a copy of B (b↔ (id, b))

5. N satisfies GN, for all a, b ∈ B, x, y ∈W , z ∈W ′.
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #64

Gentzen frames

The following properties hold for WL, WFL and WA,B:

1. W is a residuated frame

2. B is a (partial) algebra of the same type, (B = L,Fm,B)

3. B generates (W, ◦, ε) (as a monoid)

4. W ′ contains a copy of B (b↔ (id, b))

5. N satisfies GN, for all a, b ∈ B, x, y ∈W , z ∈W ′.

We call such pairs (W,B) Gentzen frames.

A cut-free Gentzen frame is not assumed to satisfy the
(CUT)-rule.



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Lattice frames

Residuated frames

Formula hierarchy

FL

Basic substructural logics

Examples of frames (FL)

Examples of frames (FEP)

GN

Gentzen frames

Proof

Applications of frames

Undecidability

References
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Gentzen frames

The following properties hold for WL, WFL and WA,B:

1. W is a residuated frame

2. B is a (partial) algebra of the same type, (B = L,Fm,B)

3. B generates (W, ◦, ε) (as a monoid)

4. W ′ contains a copy of B (b↔ (id, b))

5. N satisfies GN, for all a, b ∈ B, x, y ∈W , z ∈W ′.

We call such pairs (W,B) Gentzen frames.

A cut-free Gentzen frame is not assumed to satisfy the
(CUT)-rule.

Theorem. Given a Gentzen frame (W,B), the map
{}⊳ : B → W

+, b 7→ {b}⊳ is a (partial) homomorphism.
(Namely, if a, b ∈ B and a • b ∈ B (• is a connective) then
{a •B b}⊳ = {a}⊳ •W+ {b}⊳).



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Lattice frames

Residuated frames

Formula hierarchy

FL

Basic substructural logics

Examples of frames (FL)

Examples of frames (FEP)

GN

Gentzen frames

Proof

Applications of frames

Undecidability

References
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Proof

Key Lemma. Let (W,B) be a Gentzen frame. For all
a, b ∈ B, k, l ∈ W

+ and for every connective •, if a • b ∈ B,
a ∈ X ⊆ {a}⊳ and b ∈ Y ⊆ {b}⊳, then
1. a •B b ∈ X •W+ Y ⊆ {a •B b}⊳ (1B ∈ 1W+ ⊆ {1B}

⊳ )
2. In particular, a •B b ∈ {a}⊳ •W+ {b}⊳ ⊆ {a •B b}⊳.
3. Furthermore, because of (CUT), we have equality.
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Proof

Key Lemma. Let (W,B) be a Gentzen frame. For all
a, b ∈ B, k, l ∈ W

+ and for every connective •, if a • b ∈ B,
a ∈ X ⊆ {a}⊳ and b ∈ Y ⊆ {b}⊳, then
1. a •B b ∈ X •W+ Y ⊆ {a •B b}⊳ (1B ∈ 1W+ ⊆ {1B}

⊳ )
2. In particular, a •B b ∈ {a}⊳ •W+ {b}⊳ ⊆ {a •B b}⊳.
3. Furthermore, because of (CUT), we have equality.

Proof Let • = ∨. If x ∈ X, then x ∈ {a}⊳; so xNa and
xNa ∨ b, by (∨Rℓ); hence x ∈ {a ∨ b}⊳ and X ⊆ {a ∨ b}⊳.
Likewise Y ⊆ {a ∨ b}⊳, so X ∪ Y ⊆ {a ∨ b}⊳ and
X ∨ Y = γ(X ∪ Y ) ⊆ {a ∨ b}⊳.
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Proof

Key Lemma. Let (W,B) be a Gentzen frame. For all
a, b ∈ B, k, l ∈ W

+ and for every connective •, if a • b ∈ B,
a ∈ X ⊆ {a}⊳ and b ∈ Y ⊆ {b}⊳, then
1. a •B b ∈ X •W+ Y ⊆ {a •B b}⊳ (1B ∈ 1W+ ⊆ {1B}

⊳ )
2. In particular, a •B b ∈ {a}⊳ •W+ {b}⊳ ⊆ {a •B b}⊳.
3. Furthermore, because of (CUT), we have equality.

Proof Let • = ∨. If x ∈ X, then x ∈ {a}⊳; so xNa and
xNa ∨ b, by (∨Rℓ); hence x ∈ {a ∨ b}⊳ and X ⊆ {a ∨ b}⊳.
Likewise Y ⊆ {a ∨ b}⊳, so X ∪ Y ⊆ {a ∨ b}⊳ and
X ∨ Y = γ(X ∪ Y ) ⊆ {a ∨ b}⊳.

On the other hand, let X ∨ Y ⊆ {z}⊳, for some z ∈W . Then,
a ∈ X ⊆ X ∨ Y ⊆ {z}⊳, so aNz. Similarly, bNz, so a ∨ bNz
by (∨L), hence a ∨ b ∈ {z}⊳. Thus, a ∨ b ∈ X ∨ Y .

We used that every closed set is an intersection of basic
closed sets {z}⊳, for z ∈W .
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Applications of frames
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DM-completion

For a residuated lattice L, we associated the Gentzen frame
(WL,L).
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DM-completion

For a residuated lattice L, we associated the Gentzen frame
(WL,L).

The underlying poset of W
+
L

is the Dedekind-MacNeille
completion of the underlying poset reduct of L.

Theorem. The map x 7→ x⊳ is an embedding of L into W
+
L

.
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Completeness - Cut elimination

For every homomorphism f : Fm → B, let f̄ : FmL → W
+

be the homomorphism that extends f̄(p) = {f(p)}⊳ (p:
variable.)



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

DM-completion

Completeness - Cut elimination

FMP

FEP

Finiteness

Equations 1

Equations 2

Structural rules

Amalgamation-Interpolation

Applications

Undecidability

References
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Completeness - Cut elimination

For every homomorphism f : Fm → B, let f̄ : FmL → W
+

be the homomorphism that extends f̄(p) = {f(p)}⊳ (p:
variable.)

Corollary. If (W,B) is a cf Gentzen frame, for every
homomorphism f : Fm → B, we have f(a) ∈ f̄(a) ⊆↓ f(a).
If we have (CUT), then f̄(a) =↓ f(a).
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Completeness - Cut elimination

For every homomorphism f : Fm → B, let f̄ : FmL → W
+

be the homomorphism that extends f̄(p) = {f(p)}⊳ (p:
variable.)

Corollary. If (W,B) is a cf Gentzen frame, for every
homomorphism f : Fm → B, we have f(a) ∈ f̄(a) ⊆↓ f(a).
If we have (CUT), then f̄(a) =↓ f(a).

We define WFL |= x⇒ c by f(x) N f(c), for all f .

Theorem. If W
+
FL

|= x· ≤ c, then WFL |= x⇒ c.
Idea: For f : Fm → B, f(x) ∈ f̄(x) ⊆ f̄(c) ⊆ {f(c)}⊳, so
f(x) N f(c).
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #68

Completeness - Cut elimination

For every homomorphism f : Fm → B, let f̄ : FmL → W
+

be the homomorphism that extends f̄(p) = {f(p)}⊳ (p:
variable.)

Corollary. If (W,B) is a cf Gentzen frame, for every
homomorphism f : Fm → B, we have f(a) ∈ f̄(a) ⊆↓ f(a).
If we have (CUT), then f̄(a) =↓ f(a).

We define WFL |= x⇒ c by f(x) N f(c), for all f .

Theorem. If W
+
FL

|= x· ≤ c, then WFL |= x⇒ c.
Idea: For f : Fm → B, f(x) ∈ f̄(x) ⊆ f̄(c) ⊆ {f(c)}⊳, so
f(x) N f(c).

Corollary. FL is complete with respect to W
+
FL

.

Corollary. The algebra W
+
FL

generates RL.
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Completeness - Cut elimination

For every homomorphism f : Fm → B, let f̄ : FmL → W
+

be the homomorphism that extends f̄(p) = {f(p)}⊳ (p:
variable.)

Corollary. If (W,B) is a cf Gentzen frame, for every
homomorphism f : Fm → B, we have f(a) ∈ f̄(a) ⊆↓ f(a).
If we have (CUT), then f̄(a) =↓ f(a).

We define WFL |= x⇒ c by f(x) N f(c), for all f .

Theorem. If W
+
FL

|= x· ≤ c, then WFL |= x⇒ c.
Idea: For f : Fm → B, f(x) ∈ f̄(x) ⊆ f̄(c) ⊆ {f(c)}⊳, so
f(x) N f(c).

Corollary. FL is complete with respect to W
+
FL

.

Corollary. The algebra W
+
FL

generates RL.

The frame WFLf corresponds to cut-free FL.

Corollary (CE). FL and FL
f prove the same sequents.

Corollary. FL and the equational theory of RL are decidable.
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Finite model property

For WFL, given (x, z) ∈W ×W ′ (if z = (u, c), then u(x) ⇒ c

is a sequent), we define (x, z)↑ as the smallest subset of
W ×W ′ that contains (x, z) and is closed upwards with
respect to the rules of FL

f . Note that (x, z)↑ is finite.
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Finite model property

For WFL, given (x, z) ∈W ×W ′ (if z = (u, c), then u(x) ⇒ c

is a sequent), we define (x, z)↑ as the smallest subset of
W ×W ′ that contains (x, z) and is closed upwards with
respect to the rules of FL

f . Note that (x, z)↑ is finite.

The new frame W
′ associated with N ′ = N ∪ ((y, v)↑)c is

residuated and Gentzen.
Clearly, (N ′)c is finite, so it has a finite domain Dom((N ′)c)
and codomain Cod((N ′)c).
For every z 6∈ Cod((N ′)c), {z}⊳ = W . So, {{z}⊳ : z ∈W} is
finite and a basis for γN ′ . So, W

′+ is finite.
Moreover, if u(x) ⇒ c is not provable in FL, then it is not valid
in W

′+.
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Finite model property

For WFL, given (x, z) ∈W ×W ′ (if z = (u, c), then u(x) ⇒ c

is a sequent), we define (x, z)↑ as the smallest subset of
W ×W ′ that contains (x, z) and is closed upwards with
respect to the rules of FL

f . Note that (x, z)↑ is finite.

The new frame W
′ associated with N ′ = N ∪ ((y, v)↑)c is

residuated and Gentzen.
Clearly, (N ′)c is finite, so it has a finite domain Dom((N ′)c)
and codomain Cod((N ′)c).
For every z 6∈ Cod((N ′)c), {z}⊳ = W . So, {{z}⊳ : z ∈W} is
finite and a basis for γN ′ . So, W

′+ is finite.
Moreover, if u(x) ⇒ c is not provable in FL, then it is not valid
in W

′+.

Corollary. The system FL has the finite model property.
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Finite model property

For WFL, given (x, z) ∈W ×W ′ (if z = (u, c), then u(x) ⇒ c

is a sequent), we define (x, z)↑ as the smallest subset of
W ×W ′ that contains (x, z) and is closed upwards with
respect to the rules of FL

f . Note that (x, z)↑ is finite.

The new frame W
′ associated with N ′ = N ∪ ((y, v)↑)c is

residuated and Gentzen.
Clearly, (N ′)c is finite, so it has a finite domain Dom((N ′)c)
and codomain Cod((N ′)c).
For every z 6∈ Cod((N ′)c), {z}⊳ = W . So, {{z}⊳ : z ∈W} is
finite and a basis for γN ′ . So, W

′+ is finite.
Moreover, if u(x) ⇒ c is not provable in FL, then it is not valid
in W

′+.

Corollary. The system FL has the finite model property.

Corollary. The variety of residuated lattices is generated by
its finite members.
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FEP

A class of algebras K has the finite embeddability property
(FEP) if for every A ∈ K, every finite partial subalgebra B of
A can be (partially) embedded in a finite D ∈ K.
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FEP

A class of algebras K has the finite embeddability property
(FEP) if for every A ∈ K, every finite partial subalgebra B of
A can be (partially) embedded in a finite D ∈ K.

Theorem. Every variety of integral RL’s axiomatized by
equartions over {∨, ·, 1} has the FEP.

■ B embeds in W
+
A,B via {_}⊳ : B → W

+

■ W
+
A,B is finite

■ W
+
A,B ∈ V
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FEP

A class of algebras K has the finite embeddability property
(FEP) if for every A ∈ K, every finite partial subalgebra B of
A can be (partially) embedded in a finite D ∈ K.

Theorem. Every variety of integral RL’s axiomatized by
equartions over {∨, ·, 1} has the FEP.

■ B embeds in W
+
A,B via {_}⊳ : B → W

+

■ W
+
A,B is finite

■ W
+
A,B ∈ V

Corollary. These varieties are generated as quasivarieties
by their finite members.
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FEP

A class of algebras K has the finite embeddability property
(FEP) if for every A ∈ K, every finite partial subalgebra B of
A can be (partially) embedded in a finite D ∈ K.

Theorem. Every variety of integral RL’s axiomatized by
equartions over {∨, ·, 1} has the FEP.

■ B embeds in W
+
A,B via {_}⊳ : B → W

+

■ W
+
A,B is finite

■ W
+
A,B ∈ V

Corollary. These varieties are generated as quasivarieties
by their finite members.

Corollary. The corresponding logics have the strong finite
model property:
if Φ 6⊢ ψ, for finite Φ, then there is a finite counter-model,
namely there is D ∈ V and a homomorphism f : Fm → D,
such that f(φ) = 1, for all φ ∈ Φ, but f(ψ) 6= 1.
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #71

Finiteness

Idea: As every element in W
+
A,B is an intersection of basic

elements. So it suffices to prove that there are only finitely
many such elements.
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Finiteness

Idea: As every element in W
+
A,B is an intersection of basic

elements. So it suffices to prove that there are only finitely
many such elements.

Idea: Replace the frame WA,B by one W
M

A,B, where it is
easier to work.
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #71

Finiteness

Idea: As every element in W
+
A,B is an intersection of basic

elements. So it suffices to prove that there are only finitely
many such elements.

Idea: Replace the frame WA,B by one W
M

A,B, where it is
easier to work.

Let M be the free monoid with unit over the set B and
f : M →W the extension of the identity map.

M
f

−→W
N
−−W ′

.
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Equations 1

Idea: Express equations over {∨, ·, 1} at the frame level.
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Equations 1

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.
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Equations 1

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.
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Equations 1

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #72

Equations 1

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx
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Equations 1

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)
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Equations 1

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x

2
2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2
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Equations 1

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x

2
2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2
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Equations 1

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x

2
2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1y ≤ v x2y ≤ v yx1 ≤ v yx2 ≤ v

x1x2y ≤ v
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Equations 1

Idea: Express equations over {∨, ·, 1} at the frame level.

For an equation ε over {∨, ·, 1} we distribute products over
joins to get s1 ∨ · · · ∨ sm = t1 ∨ · · · ∨ tn. si, tj : monoid terms.

s1 ∨ · · · ∨ sm ≤ t1 ∨ · · · ∨ tn and t1 ∨ · · · ∨ tn ≤ s1 ∨ · · · ∨ sm.

The first is equivalent to: &(sj ≤ t1 ∨ · · · ∨ tn).

We proceed by example: x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x

2
2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1y ≤ v x2y ≤ v yx1 ≤ v yx2 ≤ v

x1x2y ≤ v

x1 ◦ y N z x2 ◦ y N z y ◦ x1 N z y ◦ x2 N z

x1 ◦ x2 ◦ y N z
R(ε)
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Equations 2

Theorem. If (W,B) is a Gentzen frame and ε an equation
over {∨, ·, 1}, then (W,B) satisfies R(ε) iff W

+ satisfies ε.

(The linearity of the denominator of R(ε) plays an important
role in the proof.)
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Equations 2

Theorem. If (W,B) is a Gentzen frame and ε an equation
over {∨, ·, 1}, then (W,B) satisfies R(ε) iff W

+ satisfies ε.

(The linearity of the denominator of R(ε) plays an important
role in the proof.)

Corollary If an equation over {∨, ·, 1} is valid in A, then it is
also valid in W

+
A,B, for every partial subalgebra B of A.
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Equations 2

Theorem. If (W,B) is a Gentzen frame and ε an equation
over {∨, ·, 1}, then (W,B) satisfies R(ε) iff W

+ satisfies ε.

(The linearity of the denominator of R(ε) plays an important
role in the proof.)

Corollary If an equation over {∨, ·, 1} is valid in A, then it is
also valid in W

+
A,B, for every partial subalgebra B of A.

Consequently, W
+
A,B ∈ V.
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Structural rules

Given an equation ε of the form t0 ≤ t1 ∨ · · · ∨ tn, where ti
are {·, 1}-terms we construct the rule R(ε)

u[t1] ⇒ a · · · u[tn] ⇒ a

u[t0] ⇒ a
(R(ε))

where the ti’s are evaluated in (W, ◦, ε). Such a rule is called
linear if all variables in t0 are distinct.
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Structural rules

Given an equation ε of the form t0 ≤ t1 ∨ · · · ∨ tn, where ti
are {·, 1}-terms we construct the rule R(ε)

u[t1] ⇒ a · · · u[tn] ⇒ a

u[t0] ⇒ a
(R(ε))

where the ti’s are evaluated in (W, ◦, ε). Such a rule is called
linear if all variables in t0 are distinct.

Theorem. Every system obtained from FL by adding linear
rules has the cut elimination property.
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Structural rules

Given an equation ε of the form t0 ≤ t1 ∨ · · · ∨ tn, where ti
are {·, 1}-terms we construct the rule R(ε)

u[t1] ⇒ a · · · u[tn] ⇒ a

u[t0] ⇒ a
(R(ε))

where the ti’s are evaluated in (W, ◦, ε). Such a rule is called
linear if all variables in t0 are distinct.

Theorem. Every system obtained from FL by adding linear
rules has the cut elimination property.

A set of rules of the form R(ε) is called reducing if there is a
complexity measure that decreases with upward applications
of the rules (and the rules of FL).
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #74

Structural rules

Given an equation ε of the form t0 ≤ t1 ∨ · · · ∨ tn, where ti
are {·, 1}-terms we construct the rule R(ε)

u[t1] ⇒ a · · · u[tn] ⇒ a

u[t0] ⇒ a
(R(ε))

where the ti’s are evaluated in (W, ◦, ε). Such a rule is called
linear if all variables in t0 are distinct.

Theorem. Every system obtained from FL by adding linear
rules has the cut elimination property.

A set of rules of the form R(ε) is called reducing if there is a
complexity measure that decreases with upward applications
of the rules (and the rules of FL).

Theorem. Every system obtained from FL by adding linear
reducing rules is decidable. The subvariety of residuated
lattices axiomatized by the corresponding equations has
decidable equational theory.
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Amalgamation-Interpolation

Given algebras A,B,C, maps f : A → B and g : A → C and
Gentzen frames WB,WC, we define the frame W on B ∪ C,
where N is specified by ΓB,ΓC N β iff there exists α ∈ A
such that ΓC NC g(α) and ΓB, f(α) NB β.

Theorem. W is a Gentzen frame. Hence ⊳ : B ∪ C → W
+

is a quasihomomorhism.

Let D = W
+ and h, k the restrictions of ⊳ to B and C.

Corollary. The maps h : B → D and k : C → D are
homomorphisms. Moreover, injections and surjections
transfer: If f is injective (surjective), so is h.

Corollary. Commutative RL has the amalgamation property
(f, g injective) and the congruence extension property (f
injective, g surjective).

Corollary. FLe has the Craig interpolation propety and
enjoys the Local Deduction Theorem.
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Applications

■ Cut-elimination (CE) and finite model property (FMP) for
FL, (cyclic) InFL. Generation by finite members for RL,
InFL

■ The finite embeddability property (FEP) for integral RL with
{∨, ·, 1}-axioms.

■ The strong separation property for HL

■ The above extend to the non-associative case, as well as
with the addition of suitable structural rules

■ Amalgamation for commutative RL and interpolation for
commutative FL

■ (Craig) Interpolation, Robinson Property, disjunction
property and Maximova variable separation property for
FLe

■ Super-amalgamation, Transferable injections, Congruence
extension property for commutative RL
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Undecidability
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(Un)decidability

Theorem. The quasiequational theory of RL is undecidable.
(Because we can embed semigroups/monoids.) The same
holds for commutative RL.
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(Un)decidability

Theorem. The quasiequational theory of RL is undecidable.
(Because we can embed semigroups/monoids.) The same
holds for commutative RL.

Theorem. The equational theory of modular RL is
undecidable. (By transfering the corresponding result for
modular lattices).
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(Un)decidability

Theorem. The quasiequational theory of RL is undecidable.
(Because we can embed semigroups/monoids.) The same
holds for commutative RL.

Theorem. The equational theory of modular RL is
undecidable. (By transfering the corresponding result for
modular lattices).

Theorem. The equational theory of commutative, distributive
RL is decidable.
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Word problem (1)

A finitely presented algebra A = (X|R) (in a class K) has a
solvable word problem (WP) if there is an algorithm that,
given any pair of words over X, decides if they are equal or
not.
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Word problem (1)

A finitely presented algebra A = (X|R) (in a class K) has a
solvable word problem (WP) if there is an algorithm that,
given any pair of words over X, decides if they are equal or
not.

A class of algebras has solvable WP if all finitely presented
algebras in it do.



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

(Un)decidability

Word problem (1)

Word problem (2)

Word problem (3)

Word problem (4)

Word problem (5)

References
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Word problem (1)

A finitely presented algebra A = (X|R) (in a class K) has a
solvable word problem (WP) if there is an algorithm that,
given any pair of words over X, decides if they are equal or
not.

A class of algebras has solvable WP if all finitely presented
algebras in it do.

For example, the varieties of semigroups, groups, ℓ-groups,
modular lattices have unsolvable WP.
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Word problem (1)

A finitely presented algebra A = (X|R) (in a class K) has a
solvable word problem (WP) if there is an algorithm that,
given any pair of words over X, decides if they are equal or
not.

A class of algebras has solvable WP if all finitely presented
algebras in it do.

For example, the varieties of semigroups, groups, ℓ-groups,
modular lattices have unsolvable WP.

Main result: The variety CDRL of commutative, distributive
residuated lattices has unsolvable WP.
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #80

Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.
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Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.

Residuated lattices have a semigroup operation ·, but
commutative semigroups have a decidable WP.
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Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.

Residuated lattices have a semigroup operation ·, but
commutative semigroups have a decidable WP.

Alternative approach: Come up with another term definable
operation ⊙ in residuated lattices that is associative.
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Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.

Residuated lattices have a semigroup operation ·, but
commutative semigroups have a decidable WP.

Alternative approach: Come up with another term definable
operation ⊙ in residuated lattices that is associative.

Intuition: Coordinization in projective geometry and modular
lattices.
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cjk

cij d b aj

cik

b ⊙ij dai

(cki ∨ d) ∧ (ak ∨ aj)

ak

(b ∨ cjk) ∧ (ai ∨ ak)
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #81

Word problem (3)

We define an n-frame in a residuated lattice consisting of
elements a1, · · · , an and cij , for 1 ≤ i < j ≤ n and satisfying
certain conditions (the ai’s are linearly independent, cij is on
the line generated by ai and aj etc.).
We use the operations ∨ and ·.

We define the ‘line’ Lij and the operation ⊙ij .
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Word problem (3)

We define an n-frame in a residuated lattice consisting of
elements a1, · · · , an and cij , for 1 ≤ i < j ≤ n and satisfying
certain conditions (the ai’s are linearly independent, cij is on
the line generated by ai and aj etc.).
We use the operations ∨ and ·.

We define the ‘line’ Lij and the operation ⊙ij .

Theorem Given an 4-frame in a residuated lattice the
algebra (Lij ,⊙ij) is a semigroup.
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Word problem (4)

Given a finitely presented semigroup S and a variety V of
residuated lattices, we construct a finitely presented
residuated lattice A(S,V) in V.
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Nikolaos Galatos, SSAOS, Třešt 2008 Residuated lattices - slide #82

Word problem (4)

Given a finitely presented semigroup S and a variety V of
residuated lattices, we construct a finitely presented
residuated lattice A(S,V) in V.

Given a vector space W, its powerset forms a distributive
residuated lattice AW.

Theorem If
1. V is a variery of distributive residuated lattices containing

AW for some infinite-dimentional vector space W and
2. S is a finitely presented semigroup with unsolvable WP,
then the residuated lattice A(S,V) in V has unsolvable WP.

In the proof we show that for every pair of semigroup words
r, s,
S satisfies r·(x̄) = s·(x̄) iff A(S,V) satisfies r⊙(x̄′) = s⊙(x̄′).
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Word problem (4)

Given a finitely presented semigroup S and a variety V of
residuated lattices, we construct a finitely presented
residuated lattice A(S,V) in V.

Given a vector space W, its powerset forms a distributive
residuated lattice AW.

Theorem If
1. V is a variery of distributive residuated lattices containing

AW for some infinite-dimentional vector space W and
2. S is a finitely presented semigroup with unsolvable WP,
then the residuated lattice A(S,V) in V has unsolvable WP.

In the proof we show that for every pair of semigroup words
r, s,
S satisfies r·(x̄) = s·(x̄) iff A(S,V) satisfies r⊙(x̄′) = s⊙(x̄′).

Corollary The WP of CDRL is unsolvable.



Title

Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

(Un)decidability

Word problem (1)

Word problem (2)

Word problem (3)

Word problem (4)

Word problem (5)

References
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Word problem (5)

A quasi-equation is a formula of the form

(s1 = t1 & s2 = t2 & · · · & sn = tn) ⇒ s = t

The solvability/decidability of the WP states that given any
set of equations s1 = t1, s2 = t2, . . . sn = tn there is an
algorithm that decides all quasi-equations of the above form.
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Word problem (5)

A quasi-equation is a formula of the form

(s1 = t1 & s2 = t2 & · · · & sn = tn) ⇒ s = t

The solvability/decidability of the WP states that given any
set of equations s1 = t1, s2 = t2, . . . sn = tn there is an
algorithm that decides all quasi-equations of the above form.

The solvability of the quasi-equational theory states that
there is an algorithm that decides all quasi-equations of the
above form.

Corollary The quasi-equational theory of CDRL is
undecidable.
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Word problem (5)

A quasi-equation is a formula of the form

(s1 = t1 & s2 = t2 & · · · & sn = tn) ⇒ s = t

The solvability/decidability of the WP states that given any
set of equations s1 = t1, s2 = t2, . . . sn = tn there is an
algorithm that decides all quasi-equations of the above form.

The solvability of the quasi-equational theory states that
there is an algorithm that decides all quasi-equations of the
above form.

Corollary The quasi-equational theory of CDRL is
undecidable.

Corollary The equational theory of CDRL is decidable.
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N. Galatos C. van Alten
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N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated
Lattices: an algebraic glimpse at substructural logics, Studies
in Logics and the Foundations of Mathematics, Elsevier,
2007.
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