
Congruence lifting of semilattice diagrams

Miroslav Ploščica

P. J. Šafárik University, Košice

August 28, 2008



Introduction

Problem. For a given class K of algebras describe
Con K = all lattices isomorphic to ConA for some A ∈ K.

Or, at least
for given classes K, L determine if Con K = Con L
(Con K = Con L).

Especially, for finitely generated varieties K, L we have an
algorithmic problem.
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Con functor

The Con functor:

For any homomorphism of algebras f : A→ B we define

Con f : ConA→ ConB

by
α 7→ congruence generated by {(f(x), f(y)) | (x, y) ∈ α}.

Fact. Con f preserves ∨ and 0, not necessarily ∧.
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Lifting of semilattice morphisms

Let
ϕ : S → T be a (∨, 0)-homomorphisms of lattices;
f : A→ B be a homomorphisms of algebras.

We say that f lifts ϕ, if there are isomorphisms ψ1 : S → ConA,
ψ2 : T → ConB such that

S
ϕ−−−−→ T

ψ1

y ψ2

y
ConA

Con f−−−−→ ConB

commutes.
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Diagrams indexed by posets 1

Let
(P,≤) be a poset;
K be a category of algebras

Definition. A (P,≤)-indexed diagram in K is a functor

A : (P,≤) → K.
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Diagrams indexed by posets 2

That means:
an algebra A(j) ∈ K for every j ∈ P ;
a homomorphisms A(j, k) : A(j) → A(k) for every j ≤ k;

such that
A(j, j) = id(A(j)) for every j ∈ P ;
A(j, k) ◦ A(i, j) = A(i, k) for every i ≤ j ≤ k.
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Lifting of diagrams

Let P be a poset and let
D : P → S be a diagram of (∨, 0)-semilattices;
A : P → K be a diagram of algebras;

We say that A lifts D, if there are isomorphisms
ψj : D(j) → ConA(j) such that

D(j)
D(j,k)−−−−→ D(k)

ψj

y ψk

y
ConA(j)

ConA(j,k)−−−−−−→ ConA(k)

commutes for every j ≤ k.
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Results of P. Gillibert 1

Let K, L be finitely generated congruence distributive varieties. Put

Crit(K,L) = min{card(Lc) | L ∈ ConK \ ConL}

(or ∞).

Theorem
TFAE

ConK * ConL;
there exists a diagram of finite (∨, 0)-semilattices indexed by
{0, 1}n (for some n) liftable in K but not in L
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Results of P.Gillibert 2

Theorem
(2) implies (1), where

Crit(K,L) ≤ ℵn;
there exists a diagram of finite (∨, 0)-semilattices indexed by a
product of n+ 1 finite chains liftable in K but not in L

If n = 0 then also (1)=⇒ (2).

Question. What about (1)=⇒(2) for n > 0?
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Critical point aleph2

Let M01
n be the variety of bounded lattices generated by
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Critical point aleph2

Theorem
(MP 1998, 2000)

Crit(M01
n+1,M01

n ) = ℵ2

for every n ≥ 3.

Question. Is there a diagram indexed by a product of 3 finite
chains liftable in M01

n+1 but not in M01
n ?
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M3 versus M4
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General construction 1

Consider the following three linear orders on the set {1, 2, . . . , n}:

1 <1 2 <1 3 <1 · · · <1 n;

1 <2 n <2 n− 1 <2 n− 2 <2 · · · <2 2;

2 <3 n <3 n− 1 <3 · · · <3 3 <3 1.

Let Zik be the unique k-element lower subset of the ordered set
({1, . . . , n},≤i) (i ∈ {1, 2, 3}, 1 ≤ k ≤ n) and

Z(j, k, l) = Z1
j+2 ∩ Z2

k+2 ∩ Z3
l+2.
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General Construction 2

Define a diagram A : {0, 1, . . . , n− 2}3 →M01
n by

A(j, k, l) is a free algebra in M01
n generated by Z(j, k, l);

all A-morphisms are set inclusions.

Theorem
For any n > 3, Con ◦A is not liftable in Mn−1.

Miroslav Ploščica Congruence lifting of semilattice diagrams


