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The basic problem

(∗) Let C,D be the categories, let C and let there be a functor R : C → D.
Let A, B ∈ ob(C),
R(A) ∼= R(B)

?⇒ A ∼= B.

We can translate this problem using the category of R-pairs - the category
of ”possible counterexamples”.

R− pair = objects: (M, N ; t) such that M, N ∈ ob(C),
t : R(M) → R(N) is an isomorphism

morphisms: pairs of morphisms between
the object components compatible with the isos.



Universal pairs

Now we can reformulate the problem (we call it pair version of the problem).
(∗∗) Is there an object in R− pair with nonisomorphic object components?

If there is such, then we call it a solution. Exploring the category R− pair
will help us to find it, if it exists. Consider the forgetful functor
R− pair → C,(M, N ; t) 7→ M . Now we can ask for existence of the free
objects. If they exist, they give us a rough description of the objects.
Therefore we focus on them and we call them universal pairs.

At first we show how to find the universal pair for a chosen instance of the
problem using the algebraic methods.



Instances of the problem

1. Let C be a set, A, B be the sets. hom(C, A) ∼= hom(C, B)
?⇒ A ∼= B

2. F, G : Set → Set,

F × F ∼= G×G
?⇒ F ∼= G

Considering a functor H2 : SetSet → SetSet such that for every P : Set →
Set holds H2(P ) = P ×P , and for every natural transformation φ : P → Q
between the set functors we have H2(φ) = (φ, φ), then the question is:

H2(F ) ∼= H2(G)
?⇒ F ∼= G

3. F, G : Set → Set, let there be an isomorphism t : Id×F → Id×G such that
the diagram commutes.

Id× F t //

pF
Id

$$JJJJJJJJJJ Id×G
pG

Id
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Id

Does it imply F ∼= G?



How to solve the problems?

The problem 1 is easy to solve. Since hom(C, A) = AC, then the answer
depends on the cardinality of C. If C is nonempty finite set, then the answer
is positive and its pair version has empty solution. If C is empty or infinite,
then the answer is negative, the solution contains e.g. the pair (2,3; γ),
where γ : 2C → 3C is an isomorphism.

The problem 2 is similar to 1 for the case C = 2, but it is extended up to
the category of set functors. More precisely H2(F ) = hom(2,−) ◦F . To solve
it is much more difficult. In fact, during this talk we will not find the answer.
We can just approach to it using the universal pair.

The problem 3 is actually instance of (∗) such that R : SetSet →W,
W = objects: (M, m), M : Set → Set, m : M → Id

morphisms: the natural transformations between functor-components
compatible with the transformations to Id

R(F ) = (Id× F, pF
Id). In this case we will find the answer. We show the result

at the end of this presentation.



Construction of the universal pair for the problem (2)

Since H2(F ) = hom(2,−) ◦ F , it will be sufficient to find the universal pair
for the problem 1, where C = 2. Let there be two sets A, B, such that there
is isomorphism t : A2 → B2. Therefore there are mappings
t0, t1 : A2 → B,t′0, t

′
1 : B2 → A satisfying for a, b ∈ A, c, d ∈ B

(a, b)
t7→ (t0(a, b), t1(a, b))

t−1

7→ (t′0(t0(a, b), t1(a, b)), t′1(t0(a, b), t1(a, b)))

(c, d)
t−1

7→ (t′0(c, d), t
′
1(c, d))

t7→ (t0(t
′
0(c, d), t

′
1(c, d)), t1(t

′
0(c, d), t

′
1(c, d)))

Therefore (A, B) has a structure of 2-sorted algebra with the signature
Σ = {s0, s1, s′0, s

′
1}, s0, s1 : (0,0) → 1, s′0, s

′
1 : (1,1) → 0, where t0, t1, t′0, t

′
1,

respectively, are the evaluations of the operation symbols.
Since t−1 and t are mutually inverse, the algebra satisfies the duality
identities:

s′0(s0(x, y), s1(x, y)) = x s′1(s0(x, y), s1(x, y)) = y

s0(s
′
0(u, v), s′1(u, v)) = u s1(s

′
0(u, v), s′1(u, v)) = v.



Conversely, the duality identities yield the isomorphism between the second
powers of the supports. Such an algebra will be called square-iso algebra.

The many-sorted algebras behave similarly as the one-sorted, e.g. for every
set A and for a chosen item i of the list of algebra supports we can find a
free many-sorted algebra over A in the i-labeled support such that A maps
canonically to its i-labeled support.

Let A be a set, A be the free square-iso algebra over A in the 0-labeled
support, (P (A), Q(A)) be the carrier of A. Then P (A) is a set of all the
”correctly” composed terms in language of Σ with the variables from A and
with the most outer symbol being a variable or s′0 or s′1 factorized over the
duality identities. Q(A) differs from P (A) only in the most outer symbols,
here these are s0, or s1.

The sets P (A), Q(A) are defined functorially, hence we have the functors
P, Q : Set → Set. Since A is a square-iso algebra, there is an isomorphism
τA : P (A)2 → Q(A)2 which gives a rise to the natural transformation
τ : hom(2,−) ◦ P → hom(2,−) ◦Q. Therefore hom(2,−) ◦ P ∼= hom(2,−) ◦Q
and (P ◦F, Q◦F ; τF ) is a H2-pair for every F . The freeness is given by (P (A),
Q(A)) being the carrier of a free algebra. But still do not know, if P 6∼= Q.



Adjunction

All three shown instances of the basic problem actually have the same
property: the category C has all colimits and functor R is a right adjoint and
preserves the directed colimits (in (1) only if C is finite).

Recall that L a R : (η, ε) : C → D is the adjunction (L is a left adjoint to R
and R is a right adjoint to L) iff
R : C → D, L : D → C are the functors, η : IdD → RL, ε : LR → IdC are the
natural transformations such that there is one-to-one correspondence
between the morphisms f : A → R(B) in D and f̃ : L(A) → B in C, namely

A
ηA

##GGGGGGGGG
f // RB LA

Lf

%%KKKKKKKKK

f̃ // B

RLA

Rf̃
::ttttttttt

LRB.

εB

::uuuuuuuuu

The examples of adjunction appear almost in every part of mathematics,
e.g. (C ×−, hom(C,−)) on Set, (P ⊗−, homR(P,−)) on modules over a
commutative ring R, (Freeτ , Underτ) for a type τ and many similar cases of
this kind, (reflexion, embedding) of the reflexive subcategory, etc.



Theorem 1 Let L a R : (η, ε) : C → D be the adjunction such that C has all
colimits and R preserves the directed colimits. Then the category of R-pairs
has the free objects.

The proof, which will not be fully shown here, is constructive and we sketch
the construction.



Construction of the free R-pair.

The adjunction yields the comonad (N, ε, ν) such that N = L ◦R and
ν = LηR : N → N2, ε : N → Id are natural transformations given by
adjunction. Then we can construct the following diagrams. Let N0 = Id,
N1 = N and let q0 : NN0 → N1 be the identity on N . We define N2 as a
pushout of ε and ν, i.e.

N2 = NN1
q1

''
N1 = N

ε
((RRRRRRRRRRRRR

ν
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N2

Id = N0

v0

77

.

Since we already know N0, N1, N2, q0, q1, v0 we define recursively for n ∈ N,
n ≥ 3 the object Nn and the morphisms qn−1 : NNn−1 → Nn, vn : Nn−2 → Nn as
the colimit of the diagram drawn by solid lines:

N2Nk−2 Nqk−2

// NNk−1
qk−1

((##H
H

H
H

H

NNk−3

qk−3 &&NNNNNNNNNNN

Nvk−3

88qqqqqqqqqqq

Q // Nk

NNk−2

νNk−2

OO

εNk−2 // Nk−2

::v
v

v
v

v vk−2

55



We define the functors NS and NL as the directed colimits in of the chains C:

N0 v0

// N2 v2

// N4
// NS

N1 v1

// N3 v3

// N5
// NL

One can prove, that for every k ∈ ω holds Rvk = ˜qk+1 ◦ q̃k. Then R-images of
these chains have the same colimit C.

RN0 Rv0

//

q̃0 $$JJJJJJJJJ
RN2 Rv2

//

q̃2 $$JJJJJJJJJ
RN4

q̃4 $$JJJJJJJJJ
// C

iso
��

RN1 Rv1

//
q̃1

::ttttttttt

RN3 Rv3

//
q̃1

::ttttttttt

RN5
// C ′

If R preserves the directed colimits, then RNS
∼= C ∼= RNL. Therefore there

is an isomorphism τ : RNS → RNL and (NS, NL; τ) is an R-pair.



Construction of the universal pair for the problem (3)

This procedure shown above can be used to find the universal pairs for
every instance of problem (∗). In case of (3),

(NS, NL; τ) ∼= (MonS × F, MonL × F ; τ),

where MonS(A), MonL(A) are the subsets of the free monoid over a set A
satisfying literally (i.e. on the variables) the equation

aa = 1,

namely MonS(A) and MonL(A) contains all terms of the even and odd
”length”, respectively.
The transformation τF : Id×MonS × F → Id×MonS × F is actually a pair of
transformations τF = (σ, idF), where σ : Id×MonS → Id×MonS is an
isomorphism defined on a set A as follows:

τA(a, x) = (a, ax), τ−1
A (a, y) = (a, ay).

Theorem 2 One can prove that MonS 6∼= MonL, i.e. the answer for the
question 3 is negative.


