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The basic problem

(x) Let C,D be the categories, let C and let there be a functor R:C — D.
Let A, B € ob(C),
;
R(A) = R(B) => A= B.

We can translate this problem using the category of R-pairs - the category
of " possible counterexamples’ .

R — pair = objects: (M, N;t) such that M, N € ob(C),
t: R(M) — R(N) is an isomorphism
morphisms: pairs of morphisms between
the object components compatible with the isos.



Universal pairs

Now we can reformulate the problem (we call it pair version of the problem).
(x*x) Is there an object in R — pair with nonisomorphic object components?

If there is such, then we call it a solution. Exploring the category R — pair
will help us to find it, if it exists. Consider the forgetful functor

R — pair — C,(M,N;t) — M. Now we can ask for existence of the free
objects. If they exist, they give us a rough description of the objects.
Therefore we focus on them and we call them universal pairs.

At first we show how to find the universal pair for a chosen instance of the
problem using the algebraic methods.



Instances of the problem

1. Let C be a set, A, B be the sets. hom(C,A) = hom(C, B) L A~B

2. F,G : Set — Set,

FXF2GxG = F2@G

Considering a functor Hs : Set®? — Set®¢? such that for every P : Set —
Set holds H>(P) = P x P, and for every natural transformation ¢ : P — Q
between the set functors we have H>(¢) = (¢, ¢), then the question is:

H(F) 2 Hy(G) = F2@
3. F,G : Set — Set, let there be an isomorphism ¢ : Id x ' — Id x GG such that
the diagram commutes.

[dx F—t ~Idx G

G

Id
Does it imply F = G7?



How to solve the problems?

The problem 1 is easy to solve. Since hom(C, A) = A%, then the answer
depends on the cardinality of C. If C is nonempty finite set, then the answer
IS positive and its pair version has empty solution. If C' is empty or infinite,
then the answer is negative, the solution contains e.g. the pair (2,3;~),
where ~ : 2¢ 3¢ js an isomorphism.

The problem 2 is similar to 1 for the case C' = 2, but it is extended up to
the category of set functors. More precisely H>(F) = hom(2,—) o F. To solve
it is much more difficult. In fact, during this talk we will not find the answer.
We can just approach to it using the universal pair.

The problem 3 is actually instance of (%) such that R : Set® — W,
W = objects: (M,m), M : Set — Set, m : M — Id
morphisms: the natural transformations between functor-components
compatible with the transformations to Id

R(F) = (Id x F,pt;). In this case we will find the answer. We show the result
at the end of this presentation.



Construction of the universal pair for the problem (2)

Since Ho(F) = hom(2,—) o F, it will be sufficient to find the universal pair
for the problem 1, where C = 2. Let there be two sets A, B, such that there
is isomorphism t : A2 — B2. Therefore there are mappings

to,t1 : A2 — B,ty, t) : B2 — A satisfying for a,b € A,c,d € B

(CL, b) 'L (to(a7 b)7 tl(av b)) S (t/O(tO(aa b>7 tl(aa b))7 tll (tO(a’a b)7 tl(aa b)))
(C7 d) 'S (t/O(Ca d)a tll(ca d)) 'i) (tO(t/O(Ca d)) tll(c7 d))7 tl(t6(07 d)7 tll(ca d)))

Therefore (A, B) has a structure of 2-sorted algebra with the signature
> = {so, 51,54, 51}: s0,s1:(0,0) = 1, s5,s] : (1,1) — O, where to, t1,tq, t],
respectively, are the evaluations of the operation symbols.

Since t~1 and t are mutually inverse, the algebra satisfies the duality
identities:

56(80(x7y>781(w7y)) - S/I(SO(ZUJy)asl(xay>) —Y

50(86(11/7 ’U), Sll(uav)) —Uu 81(86(’(1,,’0), 8,1(11,, U)) — .



Conversely, the duality identities yield the isomorphism between the second
powers of the supports. Such an algebra will be called square-iso algebra.

The many-sorted algebras behave similarly as the one-sorted, e.g. for every
set A and for a chosen item ¢ of the list of algebra supports we can find a
free many-sorted algebra over A in the i-labeled support such that A maps
canonically to its :-labeled support.

Let A be a set, A be the free square-iso algebra over A in the O-labeled
support, (P(A),Q(A)) be the carrier of A. Then P(A) is a set of all the
"correctly” composed terms in language of > with the variables from A and
with the most outer symbol being a variable or s; or s} factorized over the
duality identities. Q(A) differs from P(A) only in the most outer symbols,
here these are sg, Or si.

The sets P(A), Q(A) are defined functorially, hence we have the functors
P, Q : Set — Set. Since A is a square-iso algebra, there is an isomorphism

T4 . P(A)? — Q(A)? which gives a rise to the natural transformation

7 hom(2,—) o P — hom(2,—) o Q. Therefore hom(2,—) o P = hom(2,—) o Q
and (PoF,QoF;TF) is a Hy-pair for every F'. The freeness is given by (P(A),
Q(A)) being the carrier of a free algebra. But still do not know, if P 2 Q.



Adjunction

All three shown instances of the basic problem actually have the same
property: the category C has all colimits and functor R is a right adjoint and
preserves the directed colimits (in (1) only if C is finite).

Recall that L4 R : (n,¢) : C — D is the adjunction (L is a left adjoint to R
and R is a right adjoint to L) iff

R:C— D, L:D— C are the functors, n:Idp — RL, € : LR — Id¢ are the
natural transformations such that there is one-to-one correspondence
between the morphisms f: A — R(B) in D and f: L(A) — B in C, namely

A\ fyRB LA\Lf d /B
T €B

RLA LRB.
The examples of adjunction appear almost in every part of mathematics,
e.d. (C x —, hom(C,—-)) on Set, (P® —,homgr(P,—)) on modules over a
commutative ring R, (F'ree,,Under;) for a type 7 and many similar cases of
this kind, (reflexion,embedding) of the reflexive subcategory, etc.




Theorem 1 Let LA R: (n,¢) :C — D be the adjunction such that C has all
colimits and R preserves the directed colimits. Then the category of R-pairs
has the free objects.

The proof, which will not be fully shown here, is constructive and we sketch
the construction.



Construction of the free R-pair.

The adjunction yields the comonad (N,e,v) such that N = Lo R and
v=ILnR: N — N2, e¢: N —Id are natural transformations given by
adjunction. Then we can construct the following diagrams. Let Ng = Id,
N1 = N and let qo : NNg — N1 be the identity on N. We define N> as a
pushout of € and v, i.e.

N2 — -
Nl — ]\/ :: N2
S

Since we already know No, N1, N2, qo, q1,vo we define recursively for n € N,
n > 3 the object N, and the morphisms ¢g,—1 : NN,—-1 — Np,v, : Np_> — N, as
the colimit of the diagram drawn by solid lines:

N2Nj NN,_
-2 S Gkt
Nuv,_3 N ;: N
o  NNjp_s ‘Q :N,
qr-3 g /Uk—Q




We define the functors Ng and N as the directed colimits in of the chains C:

NO Vo N2 Vo N4 """""""""""""""""" >NS

Nl U1 N3 Vs N5 >NL

One can prove, that for every k € w holds Rvy = qx+1 0 qx. Then R-images of
these chains have the same colimit C.

RNg Rue RN Roa RNy s (1
RN Ro, RN3 Ros RNg o= O

If R preserves the directed colimits, then RNg = C = RNj,. Therefore there
is an isomorphism 7 : RNg — RNy, and (Ng, Np;7) is an R-pair.



Construction of the universal pair for the problem (3)

This procedure shown above can be used to find the universal pairs for
every instance of problem (x). In case of (3),

(NS,NL;T) = (Mong X F, Mony X F;T),

where Mong(A), Mony(A) are the subsets of the free monoid over a set A
satisfying literally (i.e. on the variables) the equation

aa = 1,

namely Mongs(A) and Mony(A) contains all terms of the even and odd
"length', respectively.

The transformation 7 : Id X Mong X F' — Id x Mong X F' is actually a pair of
transformations 7= = (o, idr), where o : Id x Mong — Id x Mong is an
isomorphism defined on a set A as follows:

TA(CL,Qﬁ) — (a,aa:), le(a,y) — (a,ay).

Theorem 2 One can prove that Mong 2 Mony, i.e. the answer for the
question 3 is negative.



