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Preliminary remark

This talk was inspired by papers of
K. Kearnes and A. Szendrei

• Clones of finite groups. Algebra Universalis 54 (2005), 23–52.
• Groups with identical subgroup lattices in all powers. J. Group
Theory, 7 (2004), 385–402.

• Clones of 2-step nilpotent groups. Algebra Universalis

First results presented by R. Pöschel
at AAA74 (Tampere 2007) and AAA76 (Linz 2008)
Now generalization
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Notations

A = 〈A, (fi )i∈I 〉 = 〈A,F 〉 algebra

Sub(Am) subalgebra lattice of the m-th direct power
(Inv(m) F m-ary invariant relations of F )

Clo(A) clone of term operations
= 〈F 〉OA clone generated by F in the clone Op(A) of all finitary
operations on A Definition clone

weakly isomorphic algebras: ∃A′ : A ∼= A′ ∧ Clo(A′) = Clo(B)

A = 〈A,F 〉, B = 〈A,G 〉
term equivalent algebras: Clo(A) = Clo(B)
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Problem: How Sub(An) determines the algebra A?

Sub(An) ∼= Sub(Bn) =⇒ ???

If A,B have the same underlying set:

Sub(An) = Sub(Bn) =⇒ ???

(for all n ∈ N, or for a particular n = n0)
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e.g., A,B ∈ K

Sub(An) ∼= Sub(Bn)
?

=⇒ Clo(A) ∼= Clo(B) or A ∼= B

Sub(An) = Sub(Bn)
?

=⇒ Clo(A) = Clo(B)
Clo(A) is unique in K modulo n-ary invariants

Sub(An) = Sub(Bn)
?

=⇒ A = B
A is unique in K modulo n-ary invariants

And if so, does n depend on the cardinality of A?

unique modulo invariants :⇐⇒ [∀n : Sub(An) = Sub(Bn)]
?

=⇒ . . .
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The Galois connection Pol− Inv

induced by the relation function f preserves relation % : f .%
F ⊆ Op(A) (set of all finitary operations f : An → A)
Q ⊆ Rel(A) (set of all finitary relations % ⊆ Am)

Inv F := {% ∈ RA | ∀f ∈ F : f . %} invariant relations
PolQ := {f ∈ Op(A) | ∀% ∈ Q : f . %} polymorphisms
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Special case: commuting operations
Operations f : An → A and g : Am → A commute if

“f (g(X )) = g(f (X ))”



g g . . . g

f x11 x12 . . . x1n

f x21 x22 . . . x2n
...

...
...

...
...

f xm1 xm2 . . . xmn

 =



g

◦
◦
...
◦


( ↓ ↓ ↓

f ◦ ◦ · · · ◦
)

=

↓

Then

f , g commute ⇐⇒ f . g • ⇐⇒ g . f •

where f • := {(a1, . . . , an, b) ∈ An+1 | f (a1, . . . , an) = b} is the
graph of f
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Example (f = g , n = m = 2)

A binary operation + : A2 → A commutes with itself (+ . +•) iff

∀a, b, c , d ∈ A : (a+b)+(c+d) = (a+c)+(b+d) .

In particular, every commutative operation commutes with itself.
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Theorem (Characterization of Galois closed elements)
A = 〈A,F 〉 finite algebra.
• Clo(A) = 〈F 〉 = Pol Inv F (clone generated by F) 1,
• m- Loc〈F 〉 = Pol Inv(m) F

If Clo(A) = Pol Inv(m) F :
Clo(A) determined by its m-ary invariants,
m-locally closed clone, clone with m-interpolation property)

• [Q] = Inv PolQ (relational clone generated by Q).

A = 〈A,F 〉 (arbitrary) algebra
• LocClo(A) = Loc〈F 〉 = Pol Inv F (locally closed clone
generated by F)

1Lev Arkadevic Kalužnin, Lev Arkadeviq Kalu�nin
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Immediate consequence: An “answer” to our problem
locally closed =⇒ clone unique modulo invariants (in K)

Proposition. Let K be the class of all algebras with a locally closed
clone of term operations, i.e. Clo(A) = Pol Inv F (in particular, K
contains all finite algebras).
Then the clone of every A ∈ K is unique in K
(as well as in the class KA of all algebras B with Clo(A) ⊆ Clo(B))
modulo invariants.

Proof. Let A = 〈A, F 〉, B = 〈A, G 〉 and Inv F = Inv G . Then

Clo(A)
A∈K
= Loc Clo(A) = Pol Inv F = Pol Inv G

= LocClo(B)
B∈K
= Clo(B)

= LocClo(B) ⊇ Clo(B)
B∈KA
⊇ Clo(A).



The problem(s) The problem via Pol− Inv Known results Entropic algebras with weak unit Further results Some open problems Final remarks

Immediate consequence: An “answer” to our problem
locally closed =⇒ clone unique modulo invariants (in K)

Clo(A) = Pol Inv F =⇒ Clo(A) unique modulo invariants (in K)

Proposition. Let K be the class of all algebras with a locally closed
clone of term operations, i.e. Clo(A) = Pol Inv F (in particular, K
contains all finite algebras).
Then the clone of every A ∈ K is unique in K
(as well as in the class KA of all algebras B with Clo(A) ⊆ Clo(B))
modulo invariants.

Proof. Let A = 〈A, F 〉, B = 〈A, G 〉 and Inv F = Inv G . Then

Clo(A)
A∈K
= Loc Clo(A) = Pol Inv F = Pol Inv G

= LocClo(B)
B∈K
= Clo(B)

= LocClo(B) ⊇ Clo(B)
B∈KA
⊇ Clo(A).



The problem(s) The problem via Pol− Inv Known results Entropic algebras with weak unit Further results Some open problems Final remarks

Immediate consequence: An “answer” to our problem
locally closed =⇒ clone unique modulo invariants (in K)

Clo(A) = Pol Inv F
? 6⇐!
=⇒ Clo(A) unique modulo invariants (in K)

Proposition. Let K be the class of all algebras with a locally closed
clone of term operations, i.e. Clo(A) = Pol Inv F (in particular, K
contains all finite algebras).
Then the clone of every A ∈ K is unique in K
(as well as in the class KA of all algebras B with Clo(A) ⊆ Clo(B))
modulo invariants.

Proof. Let A = 〈A, F 〉, B = 〈A, G 〉 and Inv F = Inv G . Then

Clo(A)
A∈K
= Loc Clo(A) = Pol Inv F = Pol Inv G

= LocClo(B)
B∈K
= Clo(B)

= LocClo(B) ⊇ Clo(B)
B∈KA
⊇ Clo(A).



The problem(s) The problem via Pol− Inv Known results Entropic algebras with weak unit Further results Some open problems Final remarks

Immediate consequence: An “answer” to our problem
locally closed =⇒ clone unique modulo invariants (in K)

Clo(A) = Pol Inv F
? 6⇐!
=⇒ Clo(A) unique modulo invariants (in K)

Proposition. Let K be the class of all algebras with a locally closed
clone of term operations, i.e. Clo(A) = Pol Inv F (in particular, K
contains all finite algebras).
Then the clone of every A ∈ K is unique in K
(as well as in the class KA of all algebras B with Clo(A) ⊆ Clo(B))
modulo invariants.

Proof. Let A = 〈A, F 〉, B = 〈A, G 〉 and Inv F = Inv G . Then

Clo(A)
A∈K
= Loc Clo(A) = Pol Inv F = Pol Inv G

= LocClo(B)
B∈K
= Clo(B)

= LocClo(B) ⊇ Clo(B)
B∈KA
⊇ Clo(A).



The problem(s) The problem via Pol− Inv Known results Entropic algebras with weak unit Further results Some open problems Final remarks

Immediate consequence: An “answer” to our problem
locally closed =⇒ clone unique modulo invariants (in K)

Clo(A) = Pol Inv F
? 6⇐!
=⇒ Clo(A) unique modulo invariants (in K)

Proposition. Let K be the class of all algebras with a locally closed
clone of term operations, i.e. Clo(A) = Pol Inv F (in particular, K
contains all finite algebras).
Then the clone of every A ∈ K is unique in K
(as well as in the class KA of all algebras B with Clo(A) ⊆ Clo(B))
modulo invariants.

Proof. Let A = 〈A, F 〉, B = 〈A, G 〉 and Inv F = Inv G . Then

Clo(A)
A∈K
= Loc Clo(A) = Pol Inv F = Pol Inv G

= LocClo(B)
B∈K
= Clo(B)

= LocClo(B) ⊇ Clo(B)
B∈KA
⊇ Clo(A).



The problem(s) The problem via Pol− Inv Known results Entropic algebras with weak unit Further results Some open problems Final remarks

Immediate consequence: An “answer” to our problem
locally closed =⇒ clone unique modulo invariants (in K)

Clo(A) = Pol Inv F
? 6⇐!
=⇒ Clo(A) unique modulo invariants (in K)

Proposition. Let K be the class of all algebras with a locally closed
clone of term operations, i.e. Clo(A) = Pol Inv F (in particular, K
contains all finite algebras).
Then the clone of every A ∈ K is unique in K
(as well as in the class KA of all algebras B with Clo(A) ⊆ Clo(B))
modulo invariants.

Proof. Let A = 〈A, F 〉, B = 〈A, G 〉 and Inv F = Inv G . Then

Clo(A)
A∈K
= Loc Clo(A) = Pol Inv F = Pol Inv G

= LocClo(B)
B∈K
= Clo(B)

= LocClo(B) ⊇ Clo(B)
B∈KA
⊇ Clo(A).
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Immediate consequence: An “answer” to our problem
m-locally closed =⇒ clone unique modulo m-ary invariants (in K)

Clo(A) = Pol Inv(m) F
? 6⇐!
=⇒ Clo(A) unique modulo m-ary invariants (in K)

Proposition. Let Km be the class of all algebras with an m-locally
closed clone of term operations, i.e. Clo(A) = Pol Inv(m) F (in
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Then the clone of every A ∈ Km is unique in K
(as well as in the class KA of all algebras B with Clo(A) ⊆ Clo(B))
modulo m-ary invariants.

Proof. Let A = 〈A, F 〉, B = 〈A, G 〉 and Inv F = Inv G . Then

Clo(A)
A∈K
= m- Loc Clo(A) = Pol Inv(m) F = Pol Inv(m) G

= m- LocClo(B)
B∈K
= Clo(B)

= m- LocClo(B) ⊇ Clo(B)
B∈KA
⊇ Clo(A).
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Near unanimity term operation

Theorem
Let A = 〈A,F 〉 be a finite algebra such that there is a (d+1)-ary
near unanimity term operation. Then CloA = 〈F 〉 = Pol Inv(d) F
(in particular, Clo(A) is unique in Kd modulo d-ary invariants).

near unanimity operation f : An → A:

f (x , y , . . . , y) = y

f (y , x , . . . , y) = y

...

f (y , y , . . . , x) = y
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Generalization:
k-edge term operation

Kearnes/Szendrei (personal communication May 2007)

Theorem
Let A = 〈A,F 〉 be a finite algebra such that
(1) A has a k-edge term for some k ∈ N,
(2) A generates a residually small variety.
Then Clo(A) = Pol Inv(d) F for some d (depending only on the
cardinality |A|).
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k-edge term
Generalization of both, near-unanimity term and Mal’cev term
A k-edge term is a (k + 1)-ary term satisfying the identities:

e(x , x , y , y , y , ..., y , y) = y
e(x , y , x , y , y , ..., y , y) = y
e(y , y , y , x , y , ..., y , y) = y
e(y , y , y , y , x , ..., y , y) = y

. . .

e(y , y , y , y , y , ..., y , x) = y

(introduced by J. Berman, P. Idziak, P. Markovic, R. McKenzie, M. Valeriote,
R. Willard: Tractability and learnability arising from algebras with few
subpowers, Proceedings of the 22nd Annual IEEE Symposium on Logic in
Computer Science, 2007)
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Is every group determined (up to isomorphism) by the
subgroup lattices of its finite powers?

Answer (Kearnes/Szendrei):

[∀n ∈ N Sub(Gn) ∼= Sub(Hn)] =⇒ G ∼= H ?

No
=⇒ G ∼= H

But for abelian groups we have (R. Baer, 1939):
Sub(G 3) ∼= Sub(H3) =⇒ G ∼= H

moreover, Sub(G 3) = Sub(H3) =⇒ G = H (diploma thesis H.A. Pham ’07)

More general (Kearnes/Szendrei):
G = 〈A, ·〉, H = 〈A,�〉 finite groups with abelian Sylow subgroups:

Sub(G 3) = Sub(H3) =⇒ Clo(G ) = Clo(H) (term equivalent)

cyclic Sylow subgroups:
Sub(G 2) ∼= Sub(H2) =⇒ G , H weakly isomorphic

Theorem (J.W.Snow): There is no k such that for every finite
group G , Clo(G ) is determined by the k-ary invariants of G .
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Entropic algebras

An algebra A = 〈A,F 〉 is called entropic if every two operations
f , g ∈ F commute (i.e. ∀f , g ∈ F : f . g•)

e ∈ A weakly neutral for an operation f : An → A :⇐⇒
n ≥ 2 and ∀i ∈ {1, . . . , n}∀x ∈ A : f (e, . . . , e, x , e, . . . , e) = x

(x at i-th place)

A = 〈A,F 〉 entropic with weakly neutral element
:⇐⇒ A entropic and ∃ e ∈ A : e is weakly neutral for every f ∈ F
(consequently all operations f ∈ F have arity at least 2)

Examples: commutative monoids 〈A, ·, e〉 (in particular abelian
groups)
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Entropic algebras and monoids

Lemma
Let A = 〈A,F , e〉 be an entropic algebra with weakly neutral
element e. Take any f ∈ F (! arity of f is at least 2) and define

x · y := f (x , y , e, . . . , e),

ThenM = 〈A, ·, e〉 is a commutative monoid (called monoid
associated to A).

Theorem
Let A = 〈A, F , e〉 be an entropic algebra with weakly neutral
element e. Then A is term-equivalent to any associated
monoidM = 〈A, ·, e〉: Clo(A) = Clo(M).

idea of the proof: For m-ary g ∈ F show
g(x1, x2, . . . , xm) = x1 · x2 · . . . · xm.
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Crucial Lemma for the proof

Lemma
Let f : An → A and g : Am → A be operations on A with m ≤ n
such that f and g commute and have a common weakly neutral
element e (thus 2 ≤ m ≤ n).Then

g(x1, . . . , xm) = f (x1, . . . , xm, e, . . . , e)

(in particular f = g for m = n).

Proof.

g g . . . g g . . . g

f x1 e . . . e e . . . e
f e x2 . . . e e . . . e
...

...
...

...
...

...
...

...
f e e . . . xm e . . . e

 =



g

x1

x2
...
xm


implies f (x1, x2, . . . , xm, e, . . . , e) = g(x1, x2, . . . , xm)
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Entropic algebras are unique modulo ternary invariants

Theorem

(1) The clone of each entropic algebra A = 〈A,F , e〉 with weakly
neutral element is determined by its ternary invariants:

Clo(A) = Pol Inv(3) F .

(2) Let E be the class of all entropic algebras with a weakly
neutral element. Then the clone of each A ∈ E is unique in E
modulo ternary invariants:

A,B ∈ E , Sub(A3) = Sub(B3) =⇒ Clo(A) = Clo(B)

(3) Let En be the class of all entropic algebras A = 〈A, f , e〉 with a
weakly neutral element and one n-ary fundamental operation.
Then each A ∈ En is unique in En modulo ternary invariants:

A,B ∈ En, Sub(A3) = Sub(B3) =⇒ A = B.
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Algebras A = 〈A, f A〉
(Generalization of semilattices)

Proposition
Let K be a class of algebras A = 〈A, f 〉 with one n-ary operation
satisfying
(1) A is entropic, i.e. f commutes with itself (f . f •),
(2) f is idempotent, i.e., f (x , . . . , x) = x
(3) f is cyclic commutative, i.e.,

f (x1, x2, . . . , xn) = f (x2, . . . , xn, x1)

Then the algebras A ∈ K are unique in K modulo (n+1)-ary
invariants, i.e.

∀A,B ∈ K : Sub(An+1) = Sub(Bn+1) =⇒ A = B.

Examples: A = 〈A,∧〉 semilattice (∧ associative, commutative,
idempotent)
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Crucial Lemma for the proof

Lemma
Let f , g : An → A satisfy:
(1) f and g commute, ((1) implies g• ∈ Inv(n+1){f })

(2) f and g are idempotent,
(3) f and g are cyclic commutative.

Then f = g.

Proof.
f (x1, . . . , xn)

(2)
= g(f (x1, . . . , xn), . . . , f (x1, . . . , xn))

(3)
= g(f (x1, x2, . . . , xn), f (x2, x3, . . . , x1), . . . , f (xn, x1, . . . , xn−1))
(1)
= f (g(x1, x2, . . . , xn), g(x2, x3, . . . , x1), . . . , g(xn, x1, . . . , xn−1))
(3)
= f (g(x1, . . . , xn), . . . , g(x1, . . . , xn))

(2)
= g(x1, . . . , xn)
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Some open problems

• Which groups are determined by their ternary invariants?
(Clo(G ) = Pol Inv(3) G ?)

• Characterize clones with the same local closure.
Motivation: Proposition. Let K be a class of algebras such that

∀A,B ∈ K : Loc Clo(A) = Loc Clo(B) =⇒ Clo(A) = Clo(B).

Then the clone of every algebra in K is unique modulo invariants.

• Find further algebraic properties (P) for operations f : An → A
such that the algebras 〈A, f 〉 (or their clone) are unique
modulo (n-ary) invariants in the class
K := {〈A, f 〉 | f satisfies (P)}.
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Definition of clone

A set F of finitary functions f : An → A (on a base set A) is called
clone, if
• F contains all projections (en

i (x1, . . . , xn) = xi )
• F is closed under composition i.e. if f , g1, . . . , gn ∈ F
(f n-ary, gi m-ary), then

f [g1, . . . , gn] ∈ F
f [g1, . . . , gn](x1, . . . , xm) := f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

For arbitrary F , 〈F 〉 (clone generated by F ) is the least clone
containing F . back

e.g., for a group G = 〈A, ·,−1〉, the clone Clo(G) of term functions (= clone
generated by the operation x · y of multiplication and taking inverse x−1)
consists of all functions definable by a semigroup word:

f (x1, . . . , xn) = x s1
i1 · . . . · x

st
it

(where xij ∈ {x1, . . . , xn} and sj ∈ N, ∈ Z)
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