Universal Algebra and Computational Complexity

Lecture 2

Ross Willard

University of Waterloo, Canada

Trest, September 2008

Ross Willard (Waterloo) Algebra and Complexity Trest, September 2008 1/29



Summary of Lecture 1

Recall from yesterday:

L C P C PSPACE C EXPTIME
w

PATH
FVAL

w W
3COL CLO

Topics for today:
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Summary of Lecture 1

Recall from yesterday:

L C P C PSPACE C EXPTIME
w

PATH
FVAL

w W
3COL CLO

Topics for today:
@ “Nondeterministic’ complexity classes
@ Reductions

@ Complete problems
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“Nondeterministic polynomial time™: an example

Recall

Graph 3-Colorability problem (3COL)

INPUT: a finite graph G = (V, E).

QUESTION: Does G have a 3-coloring?

Recall that we only know 3COL € EXPTIME (and PSPACE).

Most complexity theorists conjecture that 3COL is not tractable.
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“Nondeterministic polynomial time™: an example

Recall

Graph 3-Colorability problem (3COL)

INPUT: a finite graph G = (V, E).

QUESTION: Does G have a 3-coloring?

Recall that we only know 3COL € EXPTIME (and PSPACE).

Most complexity theorists conjecture that 3COL is not tractable.
HOWEVER, if we are GIVEN a 3-coloring of G, it is easy (tractable) to

VERIFY the correctness of the 3-coloring (and thus know that G is
3-colorable).
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“Nondeterministic polynomial time™: an example

Recall

Graph 3-Colorability problem (3COL)

INPUT: a finite graph G = (V, E).

QUESTION: Does G have a 3-coloring?

Recall that we only know 3COL € EXPTIME (and PSPACE).

Most complexity theorists conjecture that 3COL is not tractable.

HOWEVER, if we are GIVEN a 3-coloring of G, it is easy (tractable) to
VERIFY the correctness of the 3-coloring (and thus know that G is
3-colorable).

Informally, 3COL is a projection of a problem in P.
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3COL as a projection of a problem in P

Identify 3COL with set
{G : 3COL answers “YES" on input G}.

Similarly with other decision problems.
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3COL as a projection of a problem in P

Identify 3COL with set
{G : 3COL answers “YES" on input G}.
Similarly with other decision problems.

Define
3COL-TEST = {(G,x) : x is a 3-coloring of G}.
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3COL as a projection of a problem in P

Identify 3COL with set
{G : 3COL answers “YES" on input G}.
Similarly with other decision problems.

Define
3COL-TEST = {(G,x) : x is a 3-coloring of G}.

Clearly 3COL-TEST is tractable (in TIME(N?), hence in P).

And
G €3COL < 3x[(G,x) € 3COL-TEST].
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Certificates for 3COL

If (G,x) € 3COL-TEST, then we call x a certificate for “G € 3COL."

We say that:
@ 3COL-TEST is a polynomial-time certifier for 3COL.
@ 3COL is polynomial-time certifiable.
@ 3COL is in Nondeterministic Polynomial Time (or NP).
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Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a
decision problem E € P such that
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Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a
decision problem E € P such that

e x € D& Jw[(x,w) € E|.
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Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a
decision problem E € P such that

e x € D& Jw[(x,w) € E|.
@ Technicality: 3 polynomial p(N) s.t. (x,w) € E = |w| < p(|x]).
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Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a
decision problem E € P such that

e x € D& Jw[(x,w) € E|.
@ Technicality: 3 polynomial p(N) s.t. (x,w) € E = |w| < p(|x]).

Definition
NP is the class of polynomial-time certifiable problems.

L CP - PSPACE C EXPTIME
w
3COL
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Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a
decision problem E € P such that

e x € D& Jw[(x,w) € E|.
@ Technicality: 3 polynomial p(N) s.t. (x,w) € E = |w| < p(|x]).

Definition
NP is the class of polynomial-time certifiable problems.

L C P C NP C PSPACE C EXPTIME
w
3COL
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Nondeterministic Polynomial Time (NP)

More precisely,

Definition

A decision problem D is Polynomial-time certifiable if there exists a
decision problem E € P such that

e x € D& Jw[(x,w) € E|.
@ Technicality: 3 polynomial p(N) s.t. (x,w) € E = |w| < p(|x]).

Definition
NP is the class of polynomial-time certifiable problems.

L C P C NP C PSPACE C EXPTIME

W
3COL
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More examples of NP problems

The following problems are all in NP (and not known to be in P).
Q@ 4COL, 5COL, etc.
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More examples of NP problems

The following problems are all in NP (and not known to be in P).
Q@ 4COL, 5COL, etc.

Q SAT:
o INPUT: a boolean formula ¢.
o QUESTION: is ¢ satisfiable?
o Certificate: an assignment of values to the variables making ¢ true.
o Polynomial-time certifier: given (¢, c), decide if p(c) =1 (i.e., FVAL).
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More examples of NP problems

The following problems are all in NP (and not known to be in P).

© 4COL, 5COL, etc.
Q SAT:

o INPUT: a boolean formula ¢.

o QUESTION: is ¢ satisfiable?

o Certificate: an assignment of values to the variables making ¢ true.

o Polynomial-time certifier: given (¢, c), decide if p(c) =1 (i.e., FVAL).
@ ISO:

e INPUT: two finite graphs Gi, Go.
QUESTION: are G; and G, isomorphic?
Certificate: an isomorphism from G; to Go.
Polynomial-time certifier: given (Gy, Gy, f), decide if f: G; = G,.
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More examples of NP problems

The following problems are all in NP (and not known to be in P).

@ 4COL, 5COL, etc.
Q SAT:

o INPUT: a boolean formula ¢.
o QUESTION: is ¢ satisfiable?
o Certificate: an assignment of values to the variables making ¢ true.
o Polynomial-time certifier: given (¢, c), decide if p(c) =1 (i.e., FVAL).
@ ISO:
e INPUT: two finite graphs Gi, Go.
o QUESTION: are G; and G, isomorphic?
o Certificate: an isomorphism from Gj to G,.
o Polynomial-time certifier: given (G, Ga, ), decide if f : G; = Gp.
Q@ HAMPATH:

e INPUT: a finite directed graph G.
o QUESTION: does G have a Hamiltonion path?
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Certifying Turing machines

In a similar way, we can “stick an N in front of any complexity class.
To define it precisely, we need the notion of a certifying Turing machine:
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Certifying Turing machines

In a similar way, we can “stick an N in front of any complexity class.
To define it precisely, we need the notion of a certifying Turing machine:
@ One additional input tape; holds the potential certificate.

o Read-only
o Grad student reader can only move RIGHT.
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Certifying Turing machines

In a similar way, we can “stick an N in front of any complexity class.
To define it precisely, we need the notion of a certifying Turing machine:
@ One additional input tape; holds the potential certificate.

o Read-only
o Grad student reader can only move RIGHT.

Input (ROM): iHHHHHHHHHHHHHgHHH
input x
Certif. (ROM) oo R T -
potential certificate z
R/W Tape 1: iHHHHHllllllllllllllll§§111111°"
R/W Tape 2: iHHHHHllllllllllllllll§§111111"'
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Nondeterministic complexity classes

Roughly,

Definition

If O is a complexity class, then a decision problem D is in NOI iff there
exists a decision problem E in two inputs (x, z), and there exists a
certifying Turing machine M, such that
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Nondeterministic complexity classes

Roughly,

Definition

If O is a complexity class, then a decision problem D is in NOI iff there
exists a decision problem E in two inputs (x, z), and there exists a
certifying Turing machine M, such that

e x € D& Jw[(x,w) € EJ.
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Nondeterministic complexity classes

Roughly,

Definition

If O is a complexity class, then a decision problem D is in NOI iff there
exists a decision problem E in two inputs (x, z), and there exists a
certifying Turing machine M, such that

e x € D& Jw[(x,w) € EJ.

@ M decides E.
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Nondeterministic complexity classes

Roughly,

Definition

If O is a complexity class, then a decision problem D is in NOI iff there
exists a decision problem E in two inputs (x, z), and there exists a
certifying Turing machine M, such that

e x € D& Jw[(x,w) € EJ.

@ M decides E.

@ Moreover, ¥(x,z), M decides whether (x, z) € E with resource usage
as defined by [0, measured as a function of N = the length of x.
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Nondeterministic complexity classes

Roughly,

Definition

If O is a complexity class, then a decision problem D is in NOI iff there
exists a decision problem E in two inputs (x, z), and there exists a
certifying Turing machine M, such that

e x € D& Jw[(x,w) € EJ.

@ M decides E.

@ Moreover, ¥(x,z), M decides whether (x, z) € E with resource usage
as defined by [0, measured as a function of N = the length of x.

@ Exercise: this defines NP equivalently.

e NL ="Nondeterministic LOGSPACE"

@ NSPACE = “Nondeterministic PSPACE"

o NEXPTIME = “Nondeterministic EXPTIME"
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Example

PATH is in NL.

Ross Willard (Waterloo) Algebra and Complexity September 2008 10 / 29




Example

PATH is in NL. I

Proof. We show that PATH is a projection of a problem that can be
decided by a LOGSPACE certifying Turing machine.
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Example

PATH is in NL. l

Proof. We show that PATH is a projection of a problem that can be
decided by a LOGSPACE certifying Turing machine.

Define

PATH-TEST = {(G,w) : G is a directed graph with V ={0,...,n—1},
and m = (v, vi,..., k) is a path from O to 1 in G}
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Example

PATH is in NL. l

Proof. We show that PATH is a projection of a problem that can be
decided by a LOGSPACE certifying Turing machine.

Define

PATH-TEST = {(G,w) : G is a directed graph with V ={0,...,n—1},
and m = (v, vi,..., k) is a path from O to 1 in G}

Clearly PATH is a projection of PATH-TEST.
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Certifying PATH-TEST

We can build a certifying Turing machine which solves PATH-TEST ...

Input (ROM): lonr oI T 0o

AL
v
=)
=
HE

input G
Certif. (ROM)  |ooOEZOIORFAT TP IO OO IR ST TIT - - -

potential path

R/W Tape 1: iHHHHHHHHHHHHH?S\HHH--'
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Certifying PATH-TEST

We can build a certifying Turing machine which solves PATH-TEST ...

Input (ROM): [onroRRRTRRRRI EORTRR R (OF T - - -

input G
Certif. (ROM)  |ooOEZOIORFAT TP IO OO IR ST TIT - - -

potential path

R/W Tape 1: NN EE

A
v

[TTTTT---

While the certifying student traverses 7, the R/W Tape 1 student copies
and remembers the last two vertices traversed, and checks the input tape
to see if they form an edge.
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Certifying PATH-TEST

We can build a certifying Turing machine which solves PATH-TEST ...

Input (ROM): [onroRRRTRRRRI EORTRR R (OF T - - -

input G
Certif. (ROM)  |ooOEZOIORFAT TP IO OO IR ST TIT - - -

potential path

R/W Tape 1: NN EE

A
v

[TTTTT---

While the certifying student traverses 7, the R/W Tape 1 student copies
and remembers the last two vertices traversed, and checks the input tape
to see if they form an edge.

Only LOGSPACE (as a function of the length of the input G) is needed.
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Comparing deterministic and nondeterministic classes

Let f : N — N be "nice” and such that f(N) > log N.

@ TIME(f(N)) € NTIME(f(N)) and similarly for SPACE.
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Comparing deterministic and nondeterministic classes

Let f : N — N be "nice” and such that f(N) > log N.

@ TIME(f(N)) € NTIME(f(N)) and similarly for SPACE.
@ NTIME(f(N)) C SPACE(f(N)).
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Comparing deterministic and nondeterministic classes

Let f : N — N be "nice” and such that f(N) > log N.

@ TIME(f(N)) € NTIME(f(N)) and similarly for SPACE.
@ NTIME(f(N)) C SPACE(f(N)).
© NSPACE(f(N)) C TIME(20(F(MD).
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Comparing deterministic and nondeterministic classes

Let f : N — N be "nice” and such that f(N) > log N.

@ TIME(f(N)) C NTIME(f(N)) and similarly for SPACE.
@ NTIME(f(N)) C SPACE(f(N)).

@ NSPACE(f(N)) C TIME(20(f(N))),

© (Savitch's Theorem): NSPACE(f(N)) C SPACE(f(N)3).
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Comparing deterministic and nondeterministic classes

Let f : N — N be "nice” and such that f(N) > log N.

@ TIME(f(N)) C NTIME(f(N)) and similarly for SPACE.
@ NTIME(f(N)) C SPACE(f(N)).

@ NSPACE(f(N)) C TIME(20(f(N))),

© (Savitch's Theorem): NSPACE(f(N)) C SPACE(f(N)3).

Since PATH € NL, Savitch's theorem shows PATH € SPACE((log N)?).
(Our algorithm showed only that PATH € SPACE(V/'N).)
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Summary of complexity classes

L C NLC P C NP C PSPACE C EXPTIME C NEXPTIME

W w w w
PATH 3COL, CLO
FVAL, 4COL, etc.
2COL SAT,
I1SO,
HAMPATH
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Summary of complexity classes

NPSPACE
1
L C NL C P C NP C PSPACE C EXPTIME C NEXPTIME
W W w W
PATH 3COL, CLO
FVAL, 4COL, etc.
2COL SAT,
SO,
HAMPATH
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Summary of complexity classes

#* NPSPACE
I
L C NL C P C NP C PSPACE C EXPTIME C NEXPTIME
W W w W
PATH 3COL, CLO
FVAL, 4COL, etc.
2COL SAT,
SO,
HAMPATH
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Summary of complexity classes

i NPSPACE
I
L C NLC P C NP C PSPACE C EXPTIME C NEXPTIME

TR, ey

PATH 3COL, 7 CLO
FVAL, 4COL, etc.
2COL SAT,
I1SO,
HAMPATH
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Summary of complexity classes

+ NPSPACE _ 7
I
L CNLC P C NP C PSPACE C EXPTIME C NEXPTIME

TR, ey

PATH 3COL, 7 CLO
FVAL, 4COL, etc.
2COL SAT,
I1SO,
HAMPATH
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Summary of complexity classes
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Summary of complexity classes

+ NPSPACE _ 7

L C NL C
W w
PATH 3COL, 7 CLO
FVAL, 4COL, etc.
2COL SAT,
I1SO,
HAMPATH

10° USD prize (Clay Mathematics Institute) for answering P Z NP,
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Suppose C, D are decision problems.
Suppose f : Cinp — Dijnp is a function.

We say that
f reduces C to D,

and write

if for all x € Gip,
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Picture of C <¢ D

I

Cinp
Dinp

Intuition: if C <¢ D, then
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Picture of C <¢ D

I

Cinp

Dinp

Intuition: if C <¢ D, then
@ Algorithms for D and f can be used to solve C.

@ Hence D is at least as hard as C (modulo the cost of computing f).
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Recall the problems 3COL and SAT:

INPUT: a finite graph G = (V, E).
QUESTION: is G 3-colorable?

INPUT: a boolean formula ¢.
QUESTION: is ¢ satisfiable?

Let's find a function f which reduces 3COL to SAT.
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A reduction of 3COL to SAT

Given a finite graph G = (V/, E), we want a boolean formula ¢¢ such that
G is 3-colorable < g is satisfiable.
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A reduction of 3COL to SAT

Given a finite graph G = (V/, E), we want a boolean formula ¢¢ such that
G is 3-colorable < g is satisfiable.

@ The variables of o will be all xX¢ (v € V, c € {r,g,b}).
o Think of x¢ as representing the assertion “v is colored c.”
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A reduction of 3COL to SAT

Given a finite graph G = (V/, E), we want a boolean formula ¢¢ such that
G is 3-colorable < g is satisfiable.

@ The variables of o will be all xX¢ (v € V, c € {r,g,b}).
o Think of x¢ as representing the assertion “v is colored c.”
@ For each v € V let «, be the formula “v has exactly one color,” i.e.,

(X" v xBV xB) A (X A XB) A —(xE A XY A S(xP A XP).
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A reduction of 3COL to SAT

Given a finite graph G = (V/, E), we want a boolean formula ¢¢ such that
G is 3-colorable < g is satisfiable.

@ The variables of o will be all xX¢ (v € V, c € {r,g,b}).
o Think of x¢ as representing the assertion “v is colored c.”
@ For each v € V let «, be the formula “v has exactly one color,” i.e.,

(X" v xBV xB) A (X A XB) A —(xE A XY A S(xP A XP).

e Forv,w € V let 8, be the formula “v and w have different colors,”
ie.,
S(x) A X)) A(xBAXE) A —|(x",J A x‘:’,)
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A reduction of 3COL to SAT

Given a finite graph G = (V/, E), we want a boolean formula ¢¢ such that
G is 3-colorable < g is satisfiable.

The variables of o will be all xX¢ (v € V, c € {r,g,b}).
o Think of x¢ as representing the assertion “v is colored c.”
For each v € V let a, be the formula “v has exactly one color,” i.e.,

(X" v xBV xB) A (X A XB) A —(xE A XY A S(xP A XP).

e Forv,w € V let 8, be the formula “v and w have different colors,”
ie.,
S(x) A X)) A(xBAXE) A —|(x",J A x‘:’,)

o Let

SOGZ(/\av)/\ N Bow

(v,w)eE

This clearly works.
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Picture of 3COL <f SAT

Define f : G — wg. Then 3COL <; SAT.

’ . SAT

\.
£ not-SAT

Graphs
Formulas
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Picture of 3COL <f SAT

Define f : G — wg. Then 3COL <; SAT.

’ . SAT

\.
£ not-SAT

Graphs
Formulas
Thus SAT is at least as hard as 3COL, modulo the cost of computing ¢¢.
What is the cost of computing ¢¢g?
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Computing f with a functional Turing machine

Idea: replace the output bit with an output write-only tape.

hia

Input (ROM):  [0I0[T0T0I0[0TI10[0[0T0I0[TI0I00ITI0[0[0[010I0I0 IS STOIOFA T T - - -

R/W Tape 1: |IHHHHHHHHIHHHH??HHH--‘

R/W Tape 2: iHIHHHHllllllllllllllléﬂ\llllll'--
I Y

Output tape: LTI TP TI TP ITITIITPITTTISSITITIIIT -

At the start.
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Computing f with a functional Turing machine

Idea: replace the output bit with an output write-only tape.

hia

Input (ROM):  [0I0[T0T0I0[0TI10[0[0T0I0[TI0I00ITI0[0[0[010I0I0 IS STOIOFA T T - - -

input G
R/W Tape 1:  |AFARGCHAI FAACHATE SOl PRI FEWels ST TT T T T - - -

o

S
N~

R/W Tape 2:  |GIRIRIREIFAHIATIEFAMYFPIRIOFIEISISIORFZAS]

Output tape:  HXOF VXOEVOBN ALY VXIEVEIE]

e
At the end.
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Computing f with a functional Turing machine

Idea: replace the output bit with an output write-only tape.

hia

Input (ROM):  [0I0[1]0100[01TI0[010[0[011I00[01T[0[0]0I0[010l01]

AL
N~
o]
=
F

input G
I
R/W Tape 1:  |AliZARICHARI FARICHA Tt TsFHOlfIf FE t[oFEwWlo]

Al
NN~

o

S
N~

R/W Tape 2:  |GIRIRIREIFAHIATIEFAMYFPIRIOFIEISISIORFZAS]

Output tape:  [IXOFNVXOENVOBNAKIFVKTEVKIEES SBNF LT - - -

G

Exercise: Can compute ¢ from G in TIME(N?) and SPACE(log N).
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Complexity of computing

In general:

Definition

a functional Turing machine is a Turing machine whose output bit is
replaced by an output tape (write-only).

@ Output tape grad student can only move RIGHT.

Let C, D be decision problems with appropriately encoded input sets
Cinp, Dinp respectively.

Definition

A function f : Cj,p — Dinp is computed by a functional Turing Machine M
if whenever M is started with input x € Cipp, it eventually halts with f(x)
written on its output tape.
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X-computable functions

Let X be a complexity class (such as P, L, etc.).

Definition

We say that a function f : Cj,p — Dinp is computable in X if there exists a
functional Turing Machine which computes f and on input x requires no
more resources than those permitted by the definition of X.
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X-computable functions

Let X be a complexity class (such as P, L, etc.).

Definition

We say that a function f : Cj,p — Dinp is computable in X if there exists a
functional Turing Machine which computes f and on input x requires no
more resources than those permitted by the definition of X.

Example: the function f : G — ¢¢ in our example showing 3COL <; SAT
is P-computable.

e (In fact, it is L-computable.)
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X-computable functions

Let X be a complexity class (such as P, L, etc.).

Definition

We say that a function f : Cj,p — Dinp is computable in X if there exists a
functional Turing Machine which computes f and on input x requires no
more resources than those permitted by the definition of X.

Example: the function f : G — ¢¢ in our example showing 3COL <; SAT
is P-computable.

e (In fact, it is L-computable.)

For any decent complexity class X, if C <f D € X and f is X-computable,
then C € X.
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X-reductions

Suppose X, Y are complexity classes with X C Y.
Let C, D be decision problems with C,D € Y.

@ We say that C reduces to D (mod X) and write

C<xD

if there exists an X-computable function f : Ci,p — Dj,p which
reduces C to D.
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@ We say that C reduces to D (mod X) and write

C<xD

if there exists an X-computable function f : Ci,p — Dj,p which
reduces C to D.

@ We write C =x D if both C <x D and D <x C.
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X-reductions

Suppose X, Y are complexity classes with X C Y.
Let C, D be decision problems with C,D € Y.

@ We say that C reduces to D (mod X) and write

C<xD

if there exists an X-computable function f : Ci,p — Dj,p which
reduces C to D.

@ We write C =x D if both C <x D and D <x C.

This turns the =x-classes of Y into a poset.

Most widely used when X = P.
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The picture of NP (mod P)

The poset (NP/ =p, <p) has ...
Q a least element (consisting of all the elements of P), and

@ (S. Cook, ‘71; L. Levin, ‘73) a greatest element, namely, the =p-class
containing SAT .

3 SAT

<—P

Jargon: SAT is NP-complete (for <p reductions).

Ross Willard (Waterloo) Algebra and Complexity Trest, September 2008 23 /29



Definition

A decision problem D is NP-complete if:
e D e NP, and
o C<pDforall C e NP.

Equivalently (by Cook-Levin), D is NP-complete iff D =p SAT.

(S NP-complete (includes SAT)

<—P
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Karp's Theorem

Theorem (R. Karp, ‘72)

Many problems are NP-complete.
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Karp's Theorem

Theorem (R. Karp, ‘72)

Many problems are NP-complete.

Examples:
e 3COL, 4COL, etc.
o HAMPATH

@ 3SAT (the restriction of SAT to formulas in CNF, each conjunct
being a disjunction of at most 3 literals)

(Exercise: check that our proof we gave for 3COL <p SAT also shows
3COL <p 3SAT.)
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Ladner’'s Theorem

Remark: the picture below of NP is accurate only if P # NP:

(S NP-complete

<—P

Ross Willard (Waterloo) Algebra and Complexity Trest, September 2008 26 / 29



Ladner’'s Theorem

Remark: the picture below of NP is accurate only if P # NP:

(S NP-complete

<—P

The picture if P = NP: O P = NP = NP-complete
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Ladner’'s Theorem

Remark: the picture below of NP is accurate only if P # NP:

(S NP-complete

<—P

The picture if P = NP: O P = NP = NP-complete

Theorem (R. Ladner, 75)
If P # NP, then NP/ =p | > 3.
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Ladner’'s Theorem

Remark: the picture below of NP is accurate only if P # NP:

(S NP-complete

<—P

The picture if P = NP: O P = NP = NP-complete

Theorem (R. Ladner, 75)
If P # NP, then NP/ =p | > 3.

In fact, if P # NP, then NP/ =p is order dense.
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The picture of EXPTIME (mod P)

NP-complete (SAT, 3SAT, 3COL, ...)
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The picture of EXPTIME (mod P)

NP-complete (SAT, 3SAT, 3COL, ...)

e (H. Friedman ‘82, unpubl.; C. Bergman, D. Juedes & G. Slutzki, ‘99)
CLO is EXPTIME-complete (for <p reductions).
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The picture of EXPTIME (mod P)

INPUT: a unary algebra A
and unary g: A — A

1-CLO
QUESTION: is g € Clo A?

NP-complete (SAT, 3SAT, 3COL, ...)

e (H. Friedman ‘82, unpubl.; C. Bergman, D. Juedes & G. Slutzki, ‘99)
CLO is EXPTIME-complete (for <p reductions).
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The picture of EXPTIME (mod P)

INPUT: a unary algebra A
and unary g: A — A

1-CLO
QUESTION: is g € Clo A?

NP-complete (SAT, 3SAT, 3COL, ...)

e (H. Friedman ‘82, unpubl.; C. Bergman, D. Juedes & G. Slutzki, ‘99)
CLO is EXPTIME-complete (for <p reductions).

o (D. Kozen, '77) 1-CLO is PSPACE-complete (for <p reductions).
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The picture of NP (mod L)

SAT, 3SAT, 3COL

PATH, 2S5AT
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The picture of NP (mod L)

SAT, 3SAT, 3COL

PATH, 2S5AT

e SAT, 3SAT and 3COL are NP-complete (for <; reductions).
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The picture of NP (mod L)

SAT, 3SAT, 3COL

PATH, 2S5AT

e SAT, 3SAT and 3COL are NP-complete (for <; reductions).
e (W. Savitch, '70) PATH, 2SAT are NL-complete (for <; reductions).
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The picture of NP (mod L)

SAT, 3SAT, 3COL

INPUT: a boolean circuit ¢
and values c for variables

VAL
¢ QUESTION: is ¢(c) = 17

PATH, 2S5AT

e SAT, 3SAT and 3COL are NP-complete (for <; reductions).
e (W. Savitch, '70) PATH, 2SAT are NL-complete (for <; reductions).

e (R. Ladner, '75) CVAL is ...
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The picture of NP (mod L)

SAT, 3SAT, 3COL

INPUT: a boolean circuit ¢
and values c for variables

VAL
¢ QUESTION: is ¢(c) = 17

PATH, 2S5AT

e SAT, 3SAT and 3COL are NP-complete (for <; reductions).
e (W. Savitch, '70) PATH, 2SAT are NL-complete (for <; reductions).

o (R. Ladner, '75) CVAL is ... P-complete (for <; reductions).
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The picture of NP (mod L)

SAT, 3SAT, 3COL

CVAL. SAT restricted to CNF ¢

HORN-SAT | each of whose clauses has at
most one positive literal

PATH, 2S5AT

e SAT, 3SAT and 3COL are NP-complete (for <; reductions).
e (W. Savitch, '70) PATH, 2SAT are NL-complete (for <; reductions).

o (R. Ladner, '75) CVAL is ... P-complete (for <; reductions).
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The picture of NP (mod L)

SAT, 3SAT, 3COL

CVAL. SAT restricted to CNF ¢

HORN-SAT | each of whose clauses has at
most one positive literal

PATH, 2S5AT

e SAT, 3SAT and 3COL are NP-complete (for <; reductions).
e (W. Savitch, '70) PATH, 2SAT are NL-complete (for <; reductions).

o (R. Ladner, '75) CVAL is ... P-complete (for <; reductions).
@ (?777) HORN-SAT and HORN-3SAT are also P-complete.
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L € NL C P C NP C PSPACE C EXPTIME --.

w w w w w w
FVAL, PATH, CVAL, SAT, 1-CLO CLO
2COL 2SAT HORN-  3SAT,
3SAT 3COL,
4COL, etc.
HAMPATH

Moreover, each problem listed above is “hardest in its class,” i.e., is
complete with respect to either <p or <; reductions.
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L € NL C P C NP C PSPACE C EXPTIME --.

w w w w w w
FVAL, PATH, CVAL, SAT, 1-CLO CLO
2COL 2SAT HORN-  3SAT,
3SAT 3COL,
4COL, etc.
HAMPATH

Moreover, each problem listed above is “hardest in its class,” i.e., is
complete with respect to either <p or <; reductions.

In Thursday's lecture: some problems from universal algebra.
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