Residuated lattices

Nikolaos Galatos

University of Denver

ngalatos@du.edu

Outline

Part I: Motivation, examples and basic theory (congruences)

Part II: Subvariety lattice (atoms and joins)

Part III: Representation, Logic, Decidability

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
References

RL examples

Title Outline

RL examples

Boolean algebras Algebras of relations Relation algebras ℓ -groups Powerset of a monoid Ideals of a ring Residuated lattices Properties Properties (proofs) Lattice/monoid properties Linguistics (verbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

Boolean algebras

A Boolean algebra is a structure $\mathbf{A} = (A, \land, \lor, \rightarrow, 0, 1)$ such that (we define $\neg a = a \rightarrow 0$) $[a \rightarrow b = \neg a \rightarrow b]$

- $(A, \land, \lor, 0, 1)$ is a bounded lattice,
- for all $a, b, c \in A$,

 $a \wedge b \leq c \Leftrightarrow b \leq a \rightarrow c \ (\land \text{-residuation})$

• for all $a \in A$, $\neg \neg a = a$ (alt. $a \lor \neg a = 1$).

Exercise. Distributivity (of \land over \lor) and complementation follow from the above conditions. Also, \land -residuation can be written equationally.

Boolean algebras provide algebraic semantics for classical propositional logic.

Heyting algebras are defined without the third condition and are algebraic semantics for intuitionistic propositional logic.

Title Outline

RL examples

Boolean algebras Algebras of relations

Relation algebras ℓ -groups Powerset of a monoid Ideals of a ring Residuated lattices Properties Properties (proofs) Lattice/monoid properties Linguistics (verbs) Linguistics (adverbs) Congruences

```
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
References
```

Algebras of relations

Let X be a set and $Rel(X) = \mathcal{P}(X \times X)$ be the set of all binary relations on X.

For relations R, and S, we denote by

- R^- the complement and by R^{\cup} the converse of R
- Δ is the equality/diagonal relation on X
- \blacksquare *R* ; *S* the relational composition of *R* and *S*

•
$$R \setminus S = (R; S^-)^-$$
 and $S/R = (S^-; R)^-$

$$\blacksquare \ R \to S = (R \cap S^-)^- = R^- \cup S$$

We have

- $(Rel(X), \cap, \cup, \rightarrow, \emptyset, X^2)$ is a Boolean algebra
- $(Rel(X),;,\Delta)$ is a monoid
- for all $R, S, T \in Rel(X)$,

 $R; S \subseteq T \Leftrightarrow S \subseteq R \backslash T \Leftrightarrow R \subseteq T/S.$

Title Outline

RL examples
Boolean algebras
Algebras of relations
Relation algebras
ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties
Properties (proofs)
Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
References

Relation algebras

A Relation algebra is a structure $\mathbf{A} = (A, \land, \lor, ;, \backslash, /, 0, 1, (_)^{-})$ such that $(0 = 1^{-})$

- $(A, \land, \lor, \bot, \top, (_)^-)$ is a Boolean algebra (we define $\bot = 1 \land 1^-$ and $\top = 1 \lor 1^-$),
- (A,;,1) is a monoid
- for all $a, b, c \in A$,

 $a; b \leq c \Leftrightarrow b \leq a \setminus c \Leftrightarrow a \leq c/b$ (residuation)

- for all $a \in A$, $\neg \neg a = a$ (we define $\neg a = a \setminus 0 = 0/a$)
- $\neg(a^-) = (\neg a)^- \text{ and } \neg(\neg x; \neg y) = (x^-; y^-)^-.$

Title Outline

RL examples

Boolean algebras Algebras of relations

Relation algebras

ℓ-groups

Powerset of a monoid

Ideals of a ring

Residuated lattices

Properties

Properties (proofs)

Lattice/monoid properties

Linguistics (verbs)

Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

ℓ-groups

A lattice-ordered group is a lattice with a compatible group structure. Alternatively, a lattice-ordered group is an algebra $\mathbf{L} = (L, \wedge, \lor, \cdot, \backslash, /, 1)$ such that

- (L, \wedge, \vee) is a lattice,
- $(L, \cdot, 1)$ is a monoid
- for all $a, b, c \in L$,

$$ab \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c/b$$

• for all
$$a \in L$$
, $a \cdot a^{-1} = 1$ (we define $x^{-1} = x \setminus 1 = 1/x$).

Example. The set of real numbers under the usual order, addition and subtraction.

Title Outline

RL examples

Boolean algebras

Algebras of relations

Relation algebras

ℓ -groups

Powerset of a monoid Ideals of a ring

Residuated lattices

Properties

Properties (proofs)

Lattice/monoid properties

Linguistics (verbs)

Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

Powerset of a monoid

Let $\mathbf{M} = (M, \cdot, e)$ be a monoid and $X, Y \subseteq M$. We define $X \cdot Y = \{x \cdot y : x \in X, y \in Y\},\ X \setminus Y = \{z \in M : X \cdot \{z\} \subseteq Y\},\ Y/X = \{z \in M : \{z\} \cdot X \subseteq Y\}.$

For the powerset $\mathcal{P}(M)$, we have

- $(\mathcal{P}(M), \cap, \cup)$ is a lattice
- $(\mathcal{P}(M), \cdot, \{e\})$ is a monoid
- for all $X, Y, Z \subseteq M$,

 $X \cdot Y \subseteq Z \Leftrightarrow Y \subseteq X \backslash Z \Leftrightarrow X \subseteq Z/Y.$

Title Outline

RL examples

Boolean algebras Algebras of relations Relation algebras

ℓ-groups

Powerset of a monoid

Ideals of a ring Residuated lattices Properties Properties (proofs) Lattice/monoid properties Linguistics (verbs) Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

Ideals of a ring

Let **R** be a ring with unit and let $\mathcal{I}(\mathbf{R})$ be the set of all (two-sided) ideals of **R**. For $I, J \in \mathcal{I}(\mathbf{R})$, we write $IJ = \{\sum_{fin} ij : i \in I, j \in J\}$ $I \setminus J = \{k : Ik \subseteq J\},\ J/I = \{k : kI \subseteq J\}.$

For the powerset $\mathcal{I}(\mathbf{R}),$ we have

- $(\mathcal{I}(\mathbf{R}), \cap, \cup)$ is a lattice
- $(\mathcal{I}(\mathbf{R}), \cdot, R)$ is a monoid
- for all ideals I, J, K of **R**,

 $I \cdot J \subseteq K \Leftrightarrow J \subseteq I \backslash K \Leftrightarrow I \subseteq K/J.$

Title Outline

RL examples

Boolean algebras Algebras of relations

Relation algebras

ℓ-groups

Powerset of a monoid

Ideals of a ring

Residuated lattices

Properties

Properties (proofs)

Lattice/monoid properties

Linguistics (verbs)

Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid, is an algebra $\mathbf{L} = (L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

- (L, \wedge, \vee) is a lattice,
- $(L, \cdot, 1)$ is a monoid and
- for all $a, b, c \in L$,

 $ab \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c/b.$

(We think of $x \setminus y$ and y/x as $x \to y$, when they are equal.)

A *pointed residuated lattice* an extension of a residuated lattice with a new constant 0. ($\sim x = x \setminus 0$ and -x = 0/x.)

- A (pointed) residuated lattice is called
- commutative, if $(L, \cdot, 1)$ is commutative (xy = yx).
- **distributive**, if (L, \land, \lor) is distibutive
- integral, if it satisfies $x \leq 1$
- contractive, if it satisfies $x \le x^2$
- involutive, if it satisfies $\sim -x = x = -\sim x$.

Title Outline

RL examples

Boolean algebras Algebras of relations Relation algebras ℓ-groups Powerset of a monoid Ideals of a ring Residuated lattices Properties Properties (proofs) Lattice/monoid properties

Linguistics (verbs)

Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

Properties

1. $x(y \lor z) = xy \lor xz$ and $(y \lor z)x = yx \lor zx$ **2.** $x \setminus (y \wedge z) = (x \setminus y) \wedge (x \setminus z)$ and $(y \wedge z)/x = (y/x) \wedge (z/x)$ **3.** $x/(y \lor z) = (x/y) \land (x/z)$ and $(y \lor z) \land x = (y \land x) \land (z \land x)$ 4. $(x/y)y \leq x$ and $y(y \setminus x) \leq x$ 5. $x(y/z) \leq (xy)/z$ and $(z \setminus y)x \leq z \setminus (yx)$ 6. (x/y)/z = x/(zy) and $z \setminus (y \setminus x) = (yz) \setminus x$ 7. $x \setminus (y/z) = (x \setminus y)/z;$ 8. $x/1 = x = 1 \setminus x$ 9. $1 \leq x/x$ and $1 \leq x \setminus x$ 10. $x \leq y/(x \setminus y)$ and $x \leq (y/x) \setminus y$ 11. $y/((y/x)\setminus y) = y/x$ and $(y/(x\setminus y))\setminus y = x\setminus y$ 12. $x/(x \setminus x) = x$ and $(x/x) \setminus x = x$; 13. $(z/y)(y/x) \leq z/x$ and $(x \setminus y)(y \setminus z) \leq x \setminus z$ Multiplication is order preserving in both coordinates. Each division operation is order preserving in the numerator and order reversing in the denominator.

Title Outline

RL examples

Boolean algebras

Algebras of relations Relation algebras ℓ -groups Powerset of a monoid Ideals of a ring Residuated lattices **Properties** Properties (proofs) Lattice/monoid properties Linguistics (verbs)

Congruences

Linguistics (adverbs)

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

Properties (proofs)

$$\begin{array}{ll} x(y \lor z) \leq w & \Leftrightarrow y \lor z \leq x \backslash w \\ & \Leftrightarrow y, z \leq x \backslash w \\ & \Leftrightarrow xy, xz \leq w \\ & \Leftrightarrow xy \lor xz \leq w \end{array}$$

 $x/y \le x/y \Rightarrow (x/y)y \le x$

 $x(y/z)z \le xy \Rightarrow x(y/z) \le (xy)/z$

$$\begin{split} [(x/y)/z](zy) &\leq x \Rightarrow (x/y)/z \leq x/(zy) \\ [x/(zy)]zy &\leq x \Rightarrow x/(zy) \leq (x/y)/z \\ w &\leq x \backslash (y/z) \quad \Leftrightarrow xw \leq y/z \\ &\Leftrightarrow xwz \leq y \\ &\Leftrightarrow wz \leq x \backslash y \\ &\Leftrightarrow w \leq (x \backslash y)/z \end{split}$$

Title Outline

RL examples
Boolean algebras
Algebras of relations
Relation algebras
ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties
Properties (proofs)
Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)
Congruences
Subvariety lattice (atoms)
Cubucuistu lettise (isine)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
References

Lattice/monoid properties

 $(z/y)(y/x)x \le (z/y)y \le z \Rightarrow (z/y)(y/x) \le z/x$

RL's satisfy no special purely lattice-theoretic or monoid-theoretic property.

Every lattice can be embedded in a (cancellative) residuated lattice.

Every monoid can be embedded in a (distributive) residuated lattice.

Title Outline

RL examples
Boolean algebras
Algebras of relations
Relation algebras
ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties
Properties (proofs)
Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
References

Linguistics (verbs)

We want to assign (a limited number of) linquistic types to English words, as well as to phrases, in such a way that we will be able to tell if a given phrase is a (syntacticly correct) sentence.

We will use n for 'noun phrase' and s for 'sentence'.

For phrases we use the rule: if A : a and B : b, then AB : ab.

We write $C : a \setminus b$ if A : a implies AC : b, for all A.

Likewise, C: b/a if A: a implies CA: b, for all A.

We assign type n to 'John.' Clearly, 'plays' has type $n \setminus s$, as all *intransitive* verbs.

John plays $n \quad n \setminus s$

 $n(n\backslash s) \leq s$

Some words may have more than one type. We write $a \le b$ if every word with type a has also type b.

Title Outline

RL examples **Boolean algebras** Algebras of relations **Relation algebras** ℓ-groups Powerset of a monoid Ideals of a ring **Residuated lattices** Properties Properties (proofs) Lattice/monoid properties Linguistics (verbs) Linguistics (adverbs) Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Applications of frames Undecidability References

Linguistics (adverbs)

(John	plays)	here	$[n(n\backslash s)](s\backslash s) \le s(s\backslash s) \le s$	
n	n ackslash s	s ackslash s	$[n(n \setminus 3)](3 \setminus 3) \leq 3(3 \setminus 3) \leq 3$	
John	(plays	here)	$s \setminus s \le (n \setminus s) \setminus (n \setminus s)$	
n	n ackslash s	$(n \backslash s) \backslash (n \backslash s)$	$) \qquad s \setminus s \ge (\pi \setminus s) \setminus (\pi \setminus s)$	

Note that 'plays' is also a *transitive* verb, so it has type $(n \setminus s)/n$.

John	(plays	football)	$[n((n\backslash s)/n)]n \le s$
n	(n ackslash s)/n	n	$[n((n \setminus s)/n)]n \leq s$
(John	plays)	football	$(n \backslash s)/n \le n \backslash (s/n)$
n	nackslash(s/n)	n	$n[(n\backslash (s/n))n] \le s$

Also, for 'John *definitely* plays football', note that we need to have $s \setminus s \le (n \setminus s)/(n \setminus s)$.

Q: Can we decide (in)equations in residuated lattices?

Title Outline

RL examples
Boolean algebras
Algebras of relations
Relation algebras
ℓ-groups
Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties
Properties (proofs)
Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)
Congruences
Subvariety lattice (atoms)
Subvariety lattice (atoms)
Subvariety lattice (atoms) Subvariety lattice (joins)
Subvariety lattice (atoms) Subvariety lattice (joins) Logic
Subvariety lattice (atoms) Subvariety lattice (joins) Logic Representation - Frames
Subvariety lattice (atoms) Subvariety lattice (joins) Logic Representation - Frames Applications of frames

Congruences

Title Outline

RL examples

Congruences

Congruences G, B Congruences R, M Congruences and sets Correspondence CNM to CNS CNS to congruence CNS to congruence Lattice isomorphism Compositions Generation Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

Congruences G, B

Definition. A *congruence* on an algebra \mathbf{A} is an equivalence relation on A that is compatible with the operations of \mathbf{A} . (Alt.the kernel of a homomorphism out of \mathbf{A} .)

Congruences in groups correspond to normal subgroups.

Given a congruence θ on a group G, the congruence class $[1]_{\theta}$ of 1 is a normal subgroup.

Given a normal subgroup N of a group G, the relation θ_N is a congruence, where $(a, b) \in \theta_N$ iff $a \setminus b \in N$ iff $\{a \setminus b, b \setminus a\} \subseteq N$.

Congruences in Boolean algebras correspond to filters.

Given a congruence θ on a Boolean algebra A, the congruence class $[1]_{\theta}$ of 1 is a filter of A.

Given a filter *F* of a Boolean algebra **A**, θ_F is a congruence, where $(a, b) \in \theta_F$ iff $a \leftrightarrow b \in F$ iff $\{a \rightarrow b, b \rightarrow a\} \subseteq F$.

Note that a filter is a subset of A closed under $\{\land,\lor,\rightarrow,1\}$ that is *convex* ($x \le y \le z$ and $x, z \in F$ implies $y \in F$).

Title Outline

RL examples

Congruences Congruences G, B

Congruences R, M Congruences and sets Correspondence CNM to CNS CNS to congruence CNS to congruence Lattice isomorphism Compositions Generation Generation of CNM Subvariety lattice (atoms) Subvariety lattice (joins) Logic Representation - Frames

Undecidability

Congruences R, M

Congruences on rings correspond to ideals.

Congruences on ℓ -groups correspond to convex ℓ -subgroups.

Congruences on monoids do not correspond to any particular kind of subset.

Do congruences on residuated lattices correspond to certain subsets?

Title Outline **RL** examples Congruences Congruences G, B Congruences R, M Congruences and sets Correspondence CNM to CNS CNS to congruence CNS to congruence Lattice isomorphism Compositions Generation Generation of CNM Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Applications of frames Undecidability References

Congruences and sets

Let A be a residuated lattice and $a, x \in A$. We define the conjugates $\lambda_a(x) = [a \setminus (xa)] \wedge 1$ and $\rho_a(x) = ax/a \wedge 1$.

An *iterated conjugate* is a composition $\gamma_{a_1}(\gamma_{a_2}(\dots \gamma_{a_n}(x)))$, where $n \in \omega$, $a_1, a_2, \dots, a_n \in A$ and $\gamma_{a_i} \in \{\lambda_{a_i}, \rho_{a_i}\}$, for all *i*.

 $X \subseteq A$ is called *normal*, if it is closed under conjugates.

We will be considering correspondences between:

- Congruences on A
- Convex, normal subalgebras (CNSs) of A
- \blacksquare Convex , normal (in A) submonoids (CNMs) of $\mathbf{A}^-=\!\downarrow 1$
- **Deductive filters of A:** $F \subseteq A$
 - $\bullet \uparrow 1 \subseteq F$
 - ◆ $a, a \setminus b \in F$ implies $b \in F$ (eqv. $\uparrow F = F$)
 - $a \in F$ implies $a \land 1 \in F$ (eqv. F is \land -closed)
 - $a \in F$ implies $b \setminus ab, ba/b \in F$

Title
Outline
RL examples
Congruences
Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence
CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM
Subvariety lattice (atoms)
Output the letting (initial)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
References

Correspondence

If S is a CNS of A, M a SNM of A^- , θ a congruence on A and F a DF of A, then

- 1. $M_s(S) = S^-$, $M_c(\theta) = [1]_{\theta}^-$ and $M_f(F) = F^-$ are SNMs of \mathbf{A}^- ,
- 2. $S_m(M) = \Xi(M), S_c(\theta) = [1]_{\theta}$ and $S_f(F) = \Xi(F^-)$ are CNSs of A,
- 3. $F_s(S) = \uparrow S$, $F_m(M) = \uparrow M$, and $F_c(\theta) = \uparrow [1]_{\theta}$ are DFs of A.
- 4. $\Theta_s(S) = \{(a, b) | a \leftrightarrow b \in S\}, \ \Theta_m(M) = \{(a, b) | a \leftrightarrow b \in M\}$ and $\Theta_f(F) = \{(a, b) | a \leftrightarrow b \in F\} = \{(a, b) | a \setminus b, b \setminus a \in F\}$ are congruences of **A**.

 $a \leftrightarrow b = a \setminus b \land b \setminus a \land 1$ $\Xi(X) = \{a \in A : x \le a \le x \setminus 1, \text{ for some } x \in X\}.$ Title Outline

RL examples

Congruences

Congruences G, B

Congruences R, M Congruences and sets

Correspondence

CNM to CNS

- CNS to congruence
- CNS to congruence
- Lattice isomorphism
- Compositions
- Generation

Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

CNM to CNS

 $\Xi(M) = \{a \in A | x \leq a \leq x \setminus 1, \text{ for some } x \in M\} \text{ is a CNS.}$ Title Outline Claim: $a \in \Xi(M)$ iff $\exists y, z \in M$ such that $y \leq a \leq z \setminus 1$. **RL** examples Indeed, $yz \leq y \leq a \leq z \setminus 1 \leq yz \setminus 1$ and $yz \in M$. Congruences Congruences G, B Congruences R, M **Convexity:** If $a, b \in \Xi(M)$, then $\exists x, y \in M$ such that Congruences and sets Correspondence $x \leq a \leq x \setminus 1$ and $y \leq b \leq y \setminus 1$. CNM to CNS CNS to congruence If $a \leq c \leq b$, then $x \leq a \leq c \leq b \leq y \setminus 1$, so $c \in \Xi(M)$. CNS to congruence Lattice isomorphism Subalg.: $xy \leq x \land y \leq a \land b \leq x \backslash 1 \land y \backslash 1 = (x \lor y) \backslash 1 \leq x \backslash 1$ Compositions Generation Generation of CNM $x \le x \lor y \le a \lor b \le x \backslash 1 \lor y \backslash 1 \le (x \land y) \backslash 1 \le (xy) \backslash 1$ Subvariety lattice (atoms) $xy \le ab \le (x \setminus 1)(y \setminus 1) \le x \setminus (y \setminus 1) = (yx) \setminus 1$ Subvariety lattice (joins) Logic $\lambda_a(yx) \leq a \backslash yxa \leq a \backslash [y/(x \backslash 1)]a \leq a \backslash [b/a]a \leq a \backslash b \leq x \backslash (y \backslash 1) = yx \boxed{1}_{\text{Representation - Frames}}$ $xy \le x/(y \setminus 1) \le a/b \le (x \setminus 1)/y \le [x \rho_{(x \setminus 1)/y}(y)] \setminus 1$ Applications of frames Undecidability (for $u = (x \setminus 1)/y$ we have $x \rho_u(y) u \leq x \{uy/u\} u \leq xuy \leq 1$) References Normality: As $\lambda_c(x)\lambda_c(x\setminus 1) \leq c\setminus x(x\setminus 1)c \wedge 1 \leq c\setminus c \wedge 1 = 1$, $\lambda_c(x) \leq \lambda_c(a) \leq \lambda_c(x \setminus 1) \leq \lambda_c(x) \setminus 1$

CNS to congruence

 $\Theta_s(S) = \{(a, b) | a \leftrightarrow b \in S\} \text{ is a congruence.}$ $a \leftrightarrow b = a \backslash b \land b \backslash a \land 1$

Equivalance: $\Theta_s(S)$ is reflexive and symmetric. If $a \leftrightarrow b, b \leftrightarrow c \in S$, we have

 $\begin{aligned} (a \leftrightarrow b)(b \leftrightarrow c) \wedge (b \leftrightarrow c)(a \leftrightarrow b) \leq \\ \leq (a \backslash b)(b \backslash c) \wedge (c \backslash b)(b \backslash a) \wedge 1 \leq (a \leftrightarrow c) \leq 1. \end{aligned}$

Comptibility: Assume $a \leftrightarrow b \in S$ and $c \in A$. $a \setminus b \leq ca \setminus cb$ implies $a \leftrightarrow b \leq ca \leftrightarrow cb \leq 1$ $\lambda_c(a \leftrightarrow b) \leq c \setminus (a \setminus b)c \wedge c \setminus (b \setminus a)c \wedge e \leq ac \leftrightarrow bc \leq 1$ $(a \wedge c) \cdot (a \leftrightarrow b) \leq a(a \leftrightarrow b) \wedge c(a \leftrightarrow b) \leq b \wedge c$ implies $a \leftrightarrow b \leq (a \wedge c) \setminus (b \wedge c)$. Likewise, $a \leftrightarrow b \leq (b \wedge c) \setminus (a \wedge c)$. So, $a \leftrightarrow b \leq (a \wedge c) \leftrightarrow (b \wedge c) \leq 1$ $a \setminus b \leq (c \setminus a) \setminus (c \setminus b)$ and $b \setminus a \leq (c \setminus b) \setminus (c \setminus a)$ imply $a \leftrightarrow b \leq (c \setminus a) \leftrightarrow (c \setminus b) \leq 1$

Congruences Congruences G, B Congruences R, M Congruences and sets Correspondence CNM to CNS CNS to congruence CNS to congruence Lattice isomorphism Compositions Generation Generation of CNM Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Applications of frames Undecidability References

Title Outline

RL examples

CNS to congruence

 $a \setminus b \le (a \setminus c)/(b \setminus c)$ and $b \setminus a \le (b \setminus c)/(a \setminus c)$ imply $a \leftrightarrow b \le (a \setminus c) \leftrightarrow'(b \setminus c) \le 1$

where $a \leftrightarrow' b = a/b \wedge b/a \wedge 1$.

So, $(a \setminus c) \leftrightarrow' (b \setminus c) \in S$ and $(a \setminus c) \leftrightarrow (b \setminus c) \in S$.

Claim: $a \leftrightarrow' b \in S$ iff $a \leftrightarrow b \in S$.

 $\lambda_b(a \leftrightarrow' b) = b \setminus [a/b \wedge b/a \wedge 1] b \wedge 1 \le b \setminus a \wedge 1$

 $\lambda_b(a \leftrightarrow' b) \land \lambda_a(a \leftrightarrow' b) \le a \leftrightarrow b \le 1$

Title Outline

RL examples

Congruences Congruences G, B Congruences R, M Congruences and sets Correspondence CNM to CNS CNS to congruence CNS to congruence Lattice isomorphism Compositions Generation Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

Lattice isomorphism

- The CNSs of A, the CNMs of A⁻ and the DF of A form lattices, denoted by CNS(A), CNM(A) and Fil(A), respectively.
- 2. All the above lattices are isomorphic to the congruence lattice Con(A) of A via the maps defined above.
- 3. The composition of the above maps gives the corresponding map; e.g., $M_s(S_c(\theta)) = M_c(\theta)$.

Claim: S_c and Θ_s are inverse maps. $S = [1]_{\Theta_s(S)}$: $a \in S$ implies $a \leftrightarrow 1 = a \setminus 1 \land a \land 1 \in S$. Conversely, $(a \leftrightarrow 1) \leq a \leq (a \leftrightarrow 1) \setminus 1$.

 $\theta = \Theta_s(S_c(\theta))$: If $(a, b) \in \Theta_s([1]_{\theta})$, then $a \leftrightarrow b \in [1]_{\theta}$, so $a \leftrightarrow b \ \theta \ 1$. Therefore, $a \ \theta \ a(a \leftrightarrow b) \le a(a \setminus b) \le b$, so $a \lor b \ \theta \ b$. Likewise, $a \lor b \ \theta \ a$, so $a \ \theta \ b$.

Conversely, if $a \ \theta \ b$, then $1 = (a \setminus a \land b \setminus b \land 1) \ \theta \ (a \setminus b \land b \setminus a \land 1) = a \leftrightarrow b.$ Title Outline

RL examples

Congruences Congruences G, B Congruences R, M Congruences and sets Correspondence CNM to CNS CNS to congruence CNS to congruence Lattice isomorphism Compositions Generation Generation of CNM Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Applications of frames Undecidability References

Compositions

Claim: $S_f(F) = S_c(\Theta_f(F))$. (Sketch)

If $a \in S_c(\Theta_f(F))$, then $a \Theta_f(F) 1$, so $a \setminus 1, 1 \setminus a \in F$. Hence $a, 1/a \in F$. Since $1 \in F$, we get $x = a \wedge 1/a \wedge 1 \in F^-$. Obviously, $x \leq a$; also $a \leq (1/a) \setminus 1 \leq x \setminus 1$. Thus, $a \in S_f(F)$.

Conversely, if $a \in S_f(F)$, then $x \le a \le x \setminus 1$, for some $x \in F^-$. So, $a \in F$ and $1/(x \setminus 1) \le 1/a$. Since, $x \le 1/(x \setminus 1)$, we have $x \le 1/a$ and $1/a \in F$. Thus both a/1 and 1/a are in F. Hence, $a \in [1]_{\Theta_f(F)}$.

Title Outline

RL examples

Congruences

Congruences G. B Congruences R, M Congruences and sets Correspondence CNM to CNS CNS to congruence CNS to congruence Lattice isomorphism Compositions Generation Generation of CNM Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Applications of frames Undecidability

Generation

If X is a subset of A^- and Y is a subset of A, then

- 1. the CNM M(X) of A^- generated by X is equal to $\Xi^-\Pi\Gamma(X)$.
- 2. The CNS S(Y) of A generated by Y is equal to $\Xi\Pi\Gamma\Delta(Y)$.
- 3. The DF F(Y) of A generated by $Y \subseteq A$ is equal to $\uparrow \Pi \Gamma(Y) = \uparrow \Pi \Gamma(Y \land 1)$.
- 4. The congruence $\Theta(P)$ on A generated by $P \subseteq A^2$ is equal to $\Theta_m(M(P'))$, where $P' = \{a \leftrightarrow b | (a, b) \in P\}$.

$$\begin{split} X \wedge 1 &= \{x \wedge 1 : x \in X\} \\ \Delta(X) &= \{x \leftrightarrow 1 : x \in X\} \\ \Pi(X) &= \{x_1 x_2 \cdots x_n : n \ge 1, x_i \in X\} \cup \{1\} \\ \Gamma(X) &= \{\gamma(x) : \gamma \text{ is an iterated conjugate }\} \\ \Xi(X) &= \{a \in A : x \le a \le x \setminus 1, \text{ for some } x \in X\} \\ \Xi^-(X) &= \{a \in A : x \le a \le 1, \text{ for some } x \in X\} \\ a \leftrightarrow b &= a \setminus b \wedge b \setminus a \wedge 1 \end{split}$$

Title Outline

RL examples

Congruences
Congruences G, B
Congruences R, M
Congruences and sets
Correspondence
CNM to CNS
CNS to congruence
CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Descentation Frames
Representation - Frames
Applications of frames
Undecidability
References

Generation of CNM

Clearly, if M is a CNM of \mathbf{A}^- that contains X, then it contains $\Gamma(X)$, by normality, $\Pi\Gamma(X)$, since M is closed under product, and $\Xi^-\Pi\Gamma(X)$, since M is convex and contains 1. We will now show that $\Xi^-\Pi\Gamma(X)$ itself is a CNM of A^- ; it obviously contains X. It is clearly convex and a submonoid of \mathbf{A}^- . To show that it is convex, consider $a \in \Xi^-\Pi\Gamma(X)$ and $u \in A$. There are $x_1, \ldots, x_n \in X$ and iterated conjugates $\gamma_1, \ldots, \gamma_n$ such that $\gamma_1(x_1) \cdots \gamma_n(x_n) \leq a \leq 1$. We have

$$\prod \lambda_u(\gamma_i(x_i)) \le \lambda_u(\prod \gamma_i(x_i)) \le \lambda_u(a) \le 1.$$

Idea for n = 2:

 $\lambda_u(a_1)\lambda_u(a_2) = (u \setminus a_1 u \land 1)(u \setminus a_2 u \land 1) \le (u \setminus a_1 u)(u \setminus a_2 u) \land 1$

 $\leq u \setminus a_1 u(u \setminus a_2 u) \land 1 \leq u \setminus a_1 a_2 u \land 1 = \lambda_u(a_1 a_2).$ Also, $\lambda_u(\gamma_i(x_i)) \in \Gamma(X)$ and $\prod \lambda_u(\gamma_i(x_i)) \in \Pi\Gamma(X)$, so $\lambda_u(a) \in \Xi^-\Pi\Gamma(X).$ Likewise, we have $\rho_u(a) \in \Xi^-\Pi\Gamma(X).$ Title Outline

RL examples

Congruences Congruences G. B Congruences R, M Congruences and sets Correspondence CNM to CNS CNS to congruence CNS to congruence Lattice isomorphism Compositions Generation Generation of CNM Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Applications of frames Undecidability References

Subvariety lattice (atoms)

Title Outline

RL examples

Congruences

Subvariety lattice (atoms)

Size

BA and ${f 2}$

BA: an atom

Fin. gen. atoms

Cancellative atoms

Idempotent rep. atoms

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

Size

We view RL as the subvariety of RL_p axiomatized by 0 = 1.

The subvariety lattices of HA (Heyting algebras) and Br (Brouwerian algebras) are uncountable, hence so are $\Lambda(\mathsf{RL}_p)$ and $\Lambda(\mathsf{RL}).$

We will

- determine the size of the set of atoms in $\Lambda(RL_p)$.
- outline a method for finding axiomatizations of certain varieties
- give a description of joins in $\Lambda(RL_p)$.

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Size
BA and 2
BA: an atom
Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undocidability
Undecidability
References

BA and 2

The variety BA of Boolean algebras is generated by the 2-element algebra 2. BA = HSP(2) = V(2).

H: homomorphic images S: subalgebras P: direct products V = HSP

Proof idea: Use the prime ideal-filter theorem for distributive lattices to show that every Boolean algebra is a subdirect product of copies of 2.

Subdirect product: A subalgebra of a product such that all projections are onto.

Clearly, 2 is subdirectly irreducible.

Subdirectly irreducible: non-trivial and

- it cannot be written as a subdirect product of a family that does not contain it.
- Alt. its congruence lattice is $\Delta \cup \uparrow \mu$.

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Size
BA and ${f 2}$
BA: an atom
Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
References

BA: an atom

The variety BA is an atom in the lattice of subvarieties of pRL.

pRL is a *congruence distributive* variety (RL's have lattice reducts) so Jonsson's Lemma applies: Given a class $\mathcal{K} \subseteq RL_p$, the subdirectly irreducible algebras

 $V(\mathcal{K})_{SI}$ in the variety generated by a \mathcal{K} are in $HSP_U(\mathcal{K})$.

An ultraproduct $\mathbf{A} \in \mathsf{P}_{\mathsf{U}}(\mathcal{K})$ is obtained by taking

- a product $\prod_{i \in I} A_i$ of $A_i \in \mathcal{K}$ and then
- a quotient ∏_{i∈I} A_i / ≃_U by an ultrafilter U over I (maximal filter on P(U)):
 for ā, b ∈ ∏_{i∈I} A_i, ā ≃_U b iff {i ∈ I : a_i = b_i} ∈ U.

First order formulas persist under ultraproducts.

Now, $HSP_U(2) = \{2, 1\}$, hence $(V(2))_{SI} = \{2\}$. Recall that $\mathcal{V} = V(\mathcal{V}_{SI})$.

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Size
BA and ${f 2}$
BA: an atom
Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms
Subvariety lattice (joins)
Logic
Descentation Frames
Representation - Frames
Applications of frames
Undecidability
References

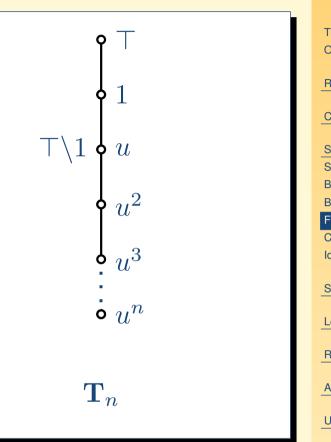
Fin. gen. atoms

We define $\top u = u \top = u$.

Note that T_n is *strictly simple* (has no non-trivial subalgebras or homomorphic images).

So, $V(\mathbf{T}_n)$ is an atom of $\Lambda(\mathsf{RL})$.

Moreover, all these atoms are distinct and $\Lambda(\mathsf{RL})$ has at least denumerably many atoms.



Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Size
BA and 2
BA: an atom
Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
References

Cancellative atoms

Left cancellativity ($ab = ac \Rightarrow b = c$) can be written equationally: $x \setminus (xy) = y$. Right cancellativity is (yx)/x = y. CanRL denotes the variety of cancellative RL's.

Prop. There are only 2 cancellative atoms: $V(\mathbb{Z})$ and $V(\mathbb{Z}^{-})$.

Let $L \in CanRL$. For $a \leq 1$, we have $1 \leq 1/a$.

Claim: If
$$\exists a < 1$$
 with $1/a = 1$, then $Sg(a) \cong \mathbb{Z}^-$

Since a < 1, we get $a^{n+1} < a^n$, for all $n \in \mathbb{N}$, by order preservation and cancellativity. Moreover, $a^{k+m}/a^m = a^k$ and $a^m/a^{m+k} = 1$, for all $m, k \in \mathbb{N}$.

Claim: If for all x < 1, we have 1 < 1/x, then **L** is an ℓ -group. For $a \in L$ set x = (1/a)a. Note that $x \le 1$, and if x < 1, then 1/x = 1/(1/a)a = (1/a)/(1/a) = 1, cancellativity; so x = 1.

The *negative cone* of a RL $\mathbf{A} = (A, \land, \lor, \lor, \backslash, /, 1)$ is the RL $\mathbf{A}^- = (A^-, \land, \lor, \lor, \backslash^{\mathbf{A}^-}, /^{\mathbf{A}^-}, 1)$, where $A^- = \{a \in A : a \leq 1\}$, $a \backslash^{\mathbf{A}^-} b = (a \backslash b) \land 1$ and $b / {}^{\mathbf{A}^-} a = (b/a) \land 1$.

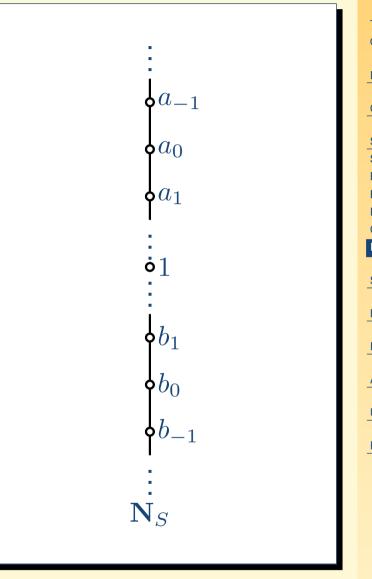
Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Size
BA and ${f 2}$
BA: an atom
Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms
Subvariety lattice (joins)
Subvariety lattice (joins)
Subvariety lattice (joins)
Logic
Logic
Logic Representation - Frames
Logic Representation - Frames
Logic Representation - Frames Applications of frames
Logic Representation - Frames Applications of frames
Logic Representation - Frames Applications of frames Undecidability
Logic Representation - Frames Applications of frames Undecidability

Idempotent rep. atoms

For $S \subseteq \mathbb{Z}$, we define $a_i b_i = a_i$, if $i \in S$ and $a_i b_i = b_i$, if $i \notin S$.

Although, we may have

- $S \neq T$, but $\mathbf{N}_S \cong \mathbf{N}_T$
- $\mathbf{N}_S \not\cong \mathbf{N}_T$, but $\mathsf{V}(\mathbf{N}_S) \neq \mathsf{V}(\mathbf{N}_T)$
- $V(N_S)$ is not an atom there are still continuum many atoms $V(N_S)$.



Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Size
BA and ${f 2}$
BA: an atom
Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms
Subvariaty lattice (joins)
Subvariety lattice (joins)
Subvariety lattice (joins)
Logic
Logic
Logic Representation - Frames Applications of frames
Logic Representation - Frames
Logic Representation - Frames Applications of frames Undecidability
Logic Representation - Frames Applications of frames
Logic Representation - Frames Applications of frames Undecidability
Logic Representation - Frames Applications of frames Undecidability
Logic Representation - Frames Applications of frames Undecidability

Subvariety lattice (joins)

Title Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Representable RL's Joins Finite basis FSI PUF's PUF and equations Axiomatization RRL Finite axiomatization Elementarity Applications

Logic

Representation - Frames

Applications of frames

Undecidability

Representable RL's

A residuated lattice is called *representable* (or semi-linear) if it is a subdirect product of totally ordered RL's. RRL denotes the class of representable RL's.

Recall that a totally ordered RL satisfies the first-order formula $(\forall x, y)(x \le y \text{ or } y \le x) [(\forall x, y)(1 \le x \setminus y \text{ or } 1 \le y \setminus x)]$

Representable Heyting algebras form a variety axiomatized by $1 = (x \rightarrow y) \lor (y \rightarrow x)$.

Representable commutative RL's form a variety axiomatized by $1 \le (x \to y)_{\wedge 1} \lor (y \to x)_{\wedge 1}$.

RRL is a variety axiomatized by $1 \leq \gamma_1(x \setminus y) \lor \gamma_2(y \setminus x)$.

Goal: Given a class \mathcal{K} of RL's axiomatized by a set of positive universal first-order formulas (PUF's), provide an axiomatization for V(\mathcal{K}).

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins) Representable RL's
Joins
Finite basis
FSI
PUF's
PUF and equations
Axiomatization
RRL
Finite axiomatization
Elementarity
Applications
Logic
Representation - Frames
nepresentation - Frames
Applications of frames
<u></u>
Undecidability
References

Joins

The meet of two varieties in $\Lambda(\mathsf{RL}_p)$ is their intersection. Also, if \mathcal{V}_1 is axiomatized by E_1 and \mathcal{V}_2 by E_2 , then $\mathcal{V}_1 \wedge \mathcal{V}_2$ is axiomatized by $E_1 \cup E_2$.

On the other hand, the join of two varieties is the variety *generated* by their union.

Also, if \mathcal{V}_1 is axiomatized by E_1 and \mathcal{V}_2 by E_2 , then $\mathcal{V}_1 \vee \mathcal{V}_2$ may not be axiomatized by $E_1 \cap E_2$.

Goals

- Find an axiomatization of $\mathcal{V}_1 \vee \mathcal{V}_2$ in terms of E_1 and E_2 .
- Find situations where: if E_1 and E_2 are finite, then $\mathcal{V}_1 \vee \mathcal{V}_2$ is finitely axiomatized.
- Find V such that its finitely axiomatized subvarieties form a lattice.

Title
Outline
RL examples
Congruences
Cubucristy lettics (starse)
Subvariety lattice (atoms)
Subvariety lattice (joins)
Representable RL's
Joins
Finite basis
FSI
PUF's
PUF and equations
Axiomatization
RRL
Finite axiomatization
Elementarity
Applications
Logic
Representation - Frames
Applications of frames
Undecidability
References

Finite basis

If \mathcal{V} is a congruence distributive variety of finite type and \mathcal{V}_{FSI} is strictly elementary, then \mathcal{V} is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence. Finitely SI: Δ is not the intersection of two non-trivial congruences.

Cor. For every variety \mathcal{V} of RL's, if \mathcal{V}_{FSI} is *strictly* elementary, then the finitely axiomatized subvarieties of \mathcal{V} form a lattice.

Pf. For finitely axiomatized subvarieties \mathcal{V}_1 , \mathcal{V}_2 , $(\mathcal{V}_1 \vee \mathcal{V}_2)_{FSI} = (\mathcal{V}_1 \cup \mathcal{V}_2)_{FSI}$ is strictly elementary.

Let V_1 , V_2 be subvarieties of RL axiomatized by E_1 , E_2 , respectively, where E_1 , E_2 have *no variables in common*.

The class $\mathcal{V}_1 \cup \mathcal{V}_2$ is axiomatized by the universal closure of (AND E_1) or (AND E_2), over infinitary logic, which is equivalent to the set { $\forall \forall (\varepsilon_1 \text{ or } \varepsilon_2) : \varepsilon_1 \in E_1, \varepsilon_2 \in E_2$ } of *positive universal first-order formulas* (PUFs).



FSI

In a RL, we say that 1 is *weakly join irreducible*, if for all negative a, b, whenever $1 = \gamma(a) \lor \gamma'(b)$, for all all iterrated conjugates γ , γ' , then a = 1 or b = 1.

Thm. A RL is FSI iff 1 is weakly join-irreducible.

(\Leftarrow) Let F, G be CNS with $F \cap G = \{1\}$. For all $a \in F^-$ and $b \in G^-$, $1 = \gamma(a) \lor \gamma'(b)$, for all iterated conjugates, because if $\gamma(a), \gamma'(b) \le u$, then $u \land 1 \in F \cap G = \{1\}$, so $1 \le u$. Since 1 is weakly join-irreducible, a = 1 or b = 1.

(\Rightarrow) Let a, b be negative elements and assume that $u \in CNS^{-}(a) \cap CNS^{-}(b)$. Then there exist products of iterated conjugates p, q of a, b, resp., such that $p, q \leq u$. If $1 = \gamma(a) \lor \gamma'(b)$, for all iterated conjugates, then $1 = p \lor q$. Thus, u = 1 and $CNS^{-}(a) \cap CNS^{-}(b) = \{1\}$. Since A is FSI, $CNS^{-}(a) = \{1\}$ or $CNS^{-}(b) = \{1\}$, hence a = 1 of b = 1.

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Representable RL's
Joins
Finite basis
FSI
PUF's
PUF and equations
Axiomatization
RRL
Finite axiomatization
Elementarity
Applications
Logic
Representation - Frames
Thepresentation - Traines
Applications of frames
Undecidability
References

PUF's

Every PUF is equivalent to (the universal closure of) a disjunction of conjunctions of equations.

 $s = t \text{ iff } (s \leq t \text{ and } t \leq s) \text{ iff } (1 \leq s \setminus t \text{ and } 1 \leq t \setminus s).$

Every conjunction of equations $1 \le p_i$ is equivalanent to the equation $1 \le p_1 \land \cdots \land p_n$.

So, every PUF is equivalent to a formula of the form

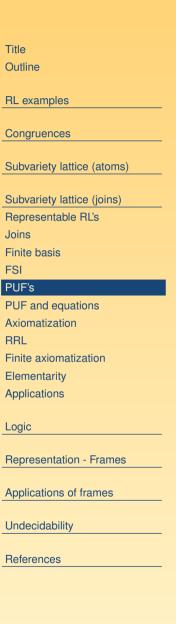
 $\alpha = \forall \overline{x} \ (1 \leq r_1 \text{ or } \cdots \text{ or } 1 \leq r_k)$

Let
$$\widetilde{\alpha}_0$$
 be $(r_1)_{\wedge 1} \lor \cdots \lor (r_k)_{\wedge 1} = 1$.

Also, for m > 0 and \aleph_0 fresh variables Y, we define $\tilde{\alpha}_m$ as the set of all equations of the form

$$\gamma_1 \lor \cdots \lor \gamma_k = 1$$

where $\gamma_i \in \Gamma_Y^m(r_i)$ for each $i \in \{1, \ldots, k\}$. Set $\widetilde{\alpha} = \bigcup_{n \in \omega} \widetilde{\alpha}_n$. Here $\Gamma_Y^m(a) = \{\pi_{y_1} \pi_{y_2} \cdots \pi_{y_m}(a_{\wedge 1}) \mid y_i \in Y, \pi_{y_i} \in \{\lambda_{y_i}, \rho_{y_i}\}\}.$



PUF and equations

Thm. For a PUF α and a FSI RL A, $\mathbf{A} \models \alpha$ iff $\mathbf{A} \models \widetilde{\alpha}$.

Pf. (\Rightarrow) If \bar{a} are elements in A, then $1 \leq r_i(\bar{a})$ for some i. So, $\gamma(r_i(\bar{a})_{\wedge 1}) = 1$, for all γ ; hence, $\gamma_1(r_1(\bar{a})_{\wedge 1}) \lor \cdots \lor \gamma_k(r_k(\bar{a})_{\wedge 1}) = 1$.

(\Leftarrow) We have $1 = \gamma_1(r_1(\bar{a})_{\wedge 1}) \lor \cdots \lor \gamma_k(r_k(\bar{a})_{\wedge 1})$, for all γ_i . Since **A** is FSI, 1 is weakly join irreducible, so $r_i(\bar{a})_{\wedge 1} = 1$, for some *i*; i.e., $r_i(\bar{a}) \le 1$.

$$\alpha = \forall \overline{x} \ (1 \le r_1 \text{ or } \cdots \text{ or } 1 \le r_k)$$

$$\widetilde{\alpha} = \{\gamma_1 \lor \cdots \lor \gamma_k = 1 \mid \gamma_i \in \Gamma_Y(r_i)\}$$

Axiomatization

Thm. Let \mathcal{K} be a class of RLs axiomatized by a set Ψ of PUF. Then V(\mathcal{K}) is axiomatized, relative to RL, by $\widetilde{\Psi}$.

Pf. Let $\mathbf{A} \in \mathsf{RL}_{SI}$. By congruence distributivity and Jónsson's Lemma, $\mathbf{A} \in \mathsf{V}(\mathcal{K})$ iff $\mathbf{A} \in \mathsf{HSP}_{\mathsf{U}}(\mathcal{K})$. Furthermore, as PUFs are preserved under H, S and P_U, $\mathbf{A} \in \mathsf{HSP}_{\mathsf{U}}(\mathcal{K})$ iff $\mathbf{A} \in K$. Finally, $\mathbf{A} \in K$ iff $\mathbf{A} \models \Psi$ iff $\mathbf{A} \models \widetilde{\Psi}$.

Let \mathcal{V}_1 , \mathcal{V}_2 be subvarieties of RL axiomatized by E_1 , E_2 , respectively, where E_1 , E_2 have *no variables in common*. The class $\mathcal{V}_1 \cup \mathcal{V}_2$ is axiomatized by the set of PUFs $\Psi = \{ \forall \forall (1 \leq r_1 \text{ or } 1 \leq r_2) \mid (1 \leq r_1) \in E_1, (1 \leq r_2) \in E_2 \}.$

Thm. $\mathcal{V}_1 \lor \mathcal{V}_2$ is axiomatized by

 $\widetilde{\Psi} = \{\gamma_1(r_1) \lor \gamma_2(r_2) = 1 \mid (1 \le r_1) \in E_1, (1 \le r_2) \in E_2, \gamma_i \in \Gamma\}$

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Representable RL's
Joins
Finite basis FSI
PUF's
PUF and equations
Axiomatization
RRI
Finite axiomatization
Flemeniariiv
Elementarity Applications
Applications
Applications
Applications
Applications Logic Representation - Frames
Applications Logic
Applications Logic Representation - Frames Applications of frames
Applications Logic Representation - Frames
Applications Logic Representation - Frames Applications of frames
Applications Logic Representation - Frames Applications of frames Undecidability
Applications Logic Representation - Frames Applications of frames Undecidability
Applications Logic Representation - Frames Applications of frames Undecidability
Applications Logic Representation - Frames Applications of frames Undecidability

RRL

 (Γ)

 ρ)

Thm. The variety RRL generated by all totally ordered residuated lattices is axiomatized by the 4-variable identity $\lambda_z((x \lor y) \land x) \lor \rho_w((x \lor y) \land y) = 1.$

Pf. A RL is a chain iff it satisfies $\forall x, y (x \leq y \text{ or } y \leq x)$, or

 $\forall x, y (1 \le (x \lor y) \backslash x \text{ or } 1 \le (x \lor y) \backslash y).$

Thus, RRL is axiomatized by the identities

$$1 = \gamma_1((x \lor y) \backslash x) \lor \gamma_2((x \lor y) \backslash y); \, \gamma_1, \gamma_2 \in \Gamma$$

So, RRL satisfies the identity

$$\lambda_z((x \lor y) \backslash x) \lor \rho_w((x \lor y) \backslash y) = 1. \qquad (\lambda,$$

Conversely, the variety axiomatized by this identity satisfies

 $x \lor y = 1 \Rightarrow \lambda_z(x) \lor y = 1$ $x \lor y = 1 \Rightarrow x \lor \rho_w(y) = 1$. (imp)

By repeated applications of (imp) on (λ, ρ) , we get (Γ) .

Finite axiomatization

Let $\beta = \forall x_1 \forall x_2 \ (1 \le x_1 \text{ or } 1 \le x_2)$ and set $B_m \Rightarrow B_{m+1} =$

 $\forall x_1 \,\forall x_2 \, \left[\left(\,\forall \, \overline{y} \,\,\forall z \,\, \operatorname{AND} \,\, \widetilde{\beta}_m \,\right) \, \Longrightarrow \, \left(\,\forall \, \overline{y} \,\,\forall z \,\, \operatorname{AND} \,\, \widetilde{\beta}_{m+1} \,\right) \,\right]$

Thm. Let \mathcal{V}_1 and \mathcal{V}_2 be two varieties of RLs that satisfy $B_m \Rightarrow B_{m+1}$. Then 1. $\mathcal{V}_1 \vee \mathcal{V}_2$ is axiomatized by Ψ_m + a finite set of equations. 2. If \mathcal{V}_1 and \mathcal{V}_2 are finitely axiomatized then so is $\mathcal{V}_1 \vee \mathcal{V}_2$ **Pf.** By congruence distributivity $(\mathcal{V}_1 \vee \mathcal{V}_2)_{FSI} \subseteq \mathcal{V}_1 \cup \mathcal{V}_2$, so $(\mathcal{V}_1 \vee \mathcal{V}_2)_{FSI}$ satisfies $B_m \Rightarrow B_{m+1}$. $\mathcal{V}_1 \vee \mathcal{V}_2$ also satisfies $B_m \Rightarrow B_{m+1}$, because the latter is a special Horn sentence (Lyndon) and is preserved under subdirect products. By compactness of FOL, $B_m \Rightarrow B_{m+1}$ is a consequence of a finite set *B* of equations, valid in $\mathcal{V}_1 \vee \mathcal{V}_2$. Note that $\mathcal{V}_1 \vee \mathcal{V}_2$ is axiomatized by Ψ and, using $B_m \Rightarrow B_{m+1}, \Psi_m \text{ implies } \Psi_n \text{ for all } n > m.$ Hence, $\mathcal{V}_1 \vee \mathcal{V}_2$ is axiomatized by $\Psi_m \cup B$.

Elementarity

Thm. For any variety \mathcal{V} of RLs, \mathcal{V}_{FSI} is an elementary class iff it satisfies $B_m \Rightarrow B_{m+1}$ for some m.

Cor. For every variety \mathcal{V} of RLs, if \mathcal{V}_{FSI} is elementary, then the finitely axiomatized subvarieties of \mathcal{V} form a lattice.

Applications

RRLs satisfy $B_0 \Rightarrow B_1$. $x \lor y = 1 \Rightarrow \gamma_1(x) \lor \gamma_2(y) = 1$, for all $\gamma_1, \gamma_2 \in \Gamma_Y^1$.

 ℓ -groups satisfy $B_1 \Rightarrow B_2$. For $a \leq 1$, we have $\lambda_z(\lambda_w(a)) = \lambda_{wz}(a)$ and $\rho_z(a) = \lambda_{z^{-1}}(a)$.

Subcommutative RSs satisfy $B_0 \Rightarrow B_1$.

k-subcommutative RSs are defined by $(x \wedge 1)^k y = y(x \wedge 1)^k$.

Logic

Title Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

A Hilbert system Substructural logics Algebraic semantics Substructural logics (examples) Substructural logics (examples) PLDT Applications to logic

Representation - Frames

Applications of frames

Undecidability

A Hilbert-style axiomatization

Title Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

A Hilbert system

Substructural logics Algebraic semantics Substructural logics (examples) Substructural logics (examples) PLDT Applications to logic

Representation - Frames

Applications of frames

Undecidability

Substructural logics

The system HL has the following inference rules:

 $\frac{\phi \quad \phi \setminus \psi}{\psi} \text{ (mp)} \quad \frac{\phi \quad \psi}{\phi \wedge \psi} \text{ (adj)} \quad \frac{\phi}{\psi \setminus \phi \psi} \text{ (pn)} \quad \frac{\phi}{\psi \phi / \psi} \text{ (pn)}$

We write $\Phi \vdash_{\mathbf{HL}} \psi$, if the formula ψ is provable in **HL** from the set of formulas Φ .

We do not allow substitution instances of formulas in Φ .

For example, $p, p \setminus q \not\vdash_{\mathbf{HL}} r$.

A set of formulas is called a *substructural logic* if it is closed under \vdash_{HL} and substitution.

Substructural logics form a lattice SL.

In the following we identify (propositional) formulas over $\{\land,\lor,\cdot,\backslash,/,1\}$ with terms over the same signature.

Algebraic semantics

 $E \models_{\mathsf{RL}} s = t$

if for every residuated lattice $\mathbf{L} \in \mathsf{RL}$ and for every homomorphism $f : \mathbf{Fm} \to \mathbf{L}$, f(u) = f(v), for all $(u = v) \in E$, implies f(s) = f(t).

Theorem. The consequence relation \vdash_{HL} is *algebraizable*, with RL as an *equivalent algebraic semantics*:

 if Φ ∪ {ψ} is a set of formulas, then Φ ⊢_{HL} ψ iff {1 ≤ φ|φ ∈ Φ} ⊨_{RL} 1 ≤ ψ, and
 if E ∪ {t = s} is a set of equations, then E ⊨_{RL} t = s iff {u\v ∧ v\u|(u = v) ∈ E} ⊢_{HL} t\s ∧ s\t.
 s = t = ⊨_{RL} 1 ≤ t\s ∧ s\t
 φ ⊣⊢_{HL} 1\(1 ∧ φ) ∧ (φ ∧ 1)\1
 Theorem. SL and Λ(RL) are dually isomorphic.

Title Outline **RL** examples Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic A Hilbert system Substructural logics Algebraic semantics Substructural logics (examples) Substructural logics (examples) PLDT Applications to logic **Representation - Frames** Applications of frames Undecidability References

Substructural logics (examples)

Note that HL does not admit

$$\begin{array}{ll} (\mathsf{C}) & [x \to (y \to z)] \to [y \to (x \to z)] & (xy = yx) \\ (\mathsf{K}) & y \to (x \to y) & (x \leq 1) \\ (\mathsf{W}) & [x \to (x \to y)] \to (x \to y) & (x \leq x^2) \end{array}$$

Examples of substructural logics include

- classical: (C)+(K)+(W)+ $\neg \neg \phi = \phi$ (DN)
- intuitionistic (Brouwer, Heyting): (C)+(K)+(W)
- many-valued (Łukasiewicz): (C)+(K)+ $(\phi \to \psi) \to \psi = \phi \lor \psi$
- basic (Hajek): (C)+(K)+ $\phi(\phi \rightarrow \psi) = \phi \land \psi$
- **MTL** (Esteva, Godo): (C)+(K)+ $(\phi \rightarrow \psi) \lor (\psi \rightarrow \phi)$
- relevance (Anderson, Belnap): (C)+(W)+ Distrib. (+ DN)
- (MA)linear logic (Girard): (C)

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
A Hilbert system
A Hilbert system Substructural logics
Substructural logics
Substructural logics Algebraic semantics
Substructural logics Algebraic semantics Substructural logics (examples)

Representation - Frames

Applications of frames

Undecidability

References

Substructural logics (examples)

Relevance logic deals with relevance.

 $p \rightarrow (q \rightarrow q)$ is not a theorem.

The algebraic models do not satisfy integrality $x \leq 1$.

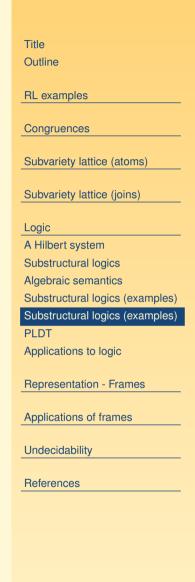
 $p \rightarrow (\neg p \rightarrow q)$ [or $(p \cdot \neg p) \rightarrow q$] is not a theorem, where $\neg p = p \rightarrow 0$. The algebraic models do not satisfy $0 \leq x$.

Commutativity and distributivity are OK, so we get *involutive* CDRL (they satisfy $\neg \neg x = x$).

Intuitionistic logic deals with provability or constructibility. The algebraic models are Heyting algebras.

Many-valued logic allows different degrees of truth. $[(p \land q) \rightarrow r] \leftrightarrow [p \rightarrow (q \rightarrow r)]$ is not a theorem. The algebraic models do not satisfy $x \land y = x \cdot y$.

Linear logic is resourse sensitive. $p \to (p \to p)$ [or $(p \cdot p) \to p$] and $p \to (p \cdot p)$ are not theorems. The algebraic models do not satisfy contraction $x \leq x^2$.



PLDT

The deduction theorem for CPL states:

 $\Sigma, \psi \vdash_{CPL} \phi \quad \text{iff} \quad \Sigma \vdash_{CPL} \psi \to \phi$

Theorem. Let $\Sigma \cup \Psi \cup \{\phi\} \subseteq Fm_{\mathcal{L}}$ and L be a logic.

- If L is commutative, integral and contractive, then $\Sigma, \Psi \vdash_{\mathbf{L}} \phi$ iff $\Sigma \vdash_{\mathbf{L}} (\bigwedge_{i=1}^{n} \psi_i) \rightarrow \phi$, for some $n \in \omega$, and $\psi_i \in \Psi$, i < n.
- If L is commutative and integral, then $\Sigma, \Psi \vdash_{\mathbf{L}} \phi$ iff $\Sigma \vdash_{\mathbf{L}} (\prod_{i=1}^{n} \psi_i) \rightarrow \phi$, for some $n \in \omega$, and $\psi_i \in \Psi$, i < n.
- If L is commutative, then

 $\Sigma, \Psi \vdash_{\mathbf{L}} \phi \quad \text{iff} \quad \Sigma \vdash_{\mathbf{L}} (\prod_{i=1}^{n} (\psi_i \land 1)) \to \phi,$ for some $n \in \omega$, and $\psi_i \in \Psi$, i < n.

If L is any substructural logic, then $\Sigma, \Psi \vdash_{\mathbf{L}} \phi$ iff $\Sigma \vdash_{\mathbf{L}} (\prod_{i=1}^{n} \gamma_{i}(\psi_{i})) \setminus \phi$, for some $n \in \omega$, iterated conjugates γ_{i} and $\psi_{i} \in \Psi$, i < n.

Title Outline **RL** examples Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic A Hilbert system Substructural logics Algebraic semantics Substructural logics (examples) Substructural logics (examples) PLDT Applications to logic **Representation - Frames** Applications of frames

Undecidability

Applications to logic

- Hilbert systems (Algebraization)
- PLDT (Congruence generation for RL's)
- Maximal consistent logics (Atoms in $\Lambda(RL)$)
- Axiomatizing intersections of logics (Joins in $\Lambda(RL)$)
- Translations (Glivenko, Kolmogorov) between logics, e.g., $\vdash_{CPL} \phi \text{ iff } \vdash_{Int} \neg \neg \phi$ (Structure of $\Lambda(RL)$ and nuclei)

\leftrightarrow	Logic	Algebraic semantics Substructural logics (examples) Substructural logics (examples)
\leftrightarrow	PLDT	PLDT Applications to logic
\leftrightarrow	localDT	Representation - Frames
\leftrightarrow	deduction theorem	Applications of frames
\leftrightarrow	strong seperation (Hilbert)	Undecidability
\leftrightarrow	decid. provability (Gentzen)	References
\leftrightarrow	cut elimination (+ fin. proof)	
\leftrightarrow	interpolation	
	$\begin{array}{c} \longleftrightarrow \\ \longleftrightarrow \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Title Outline

Logic

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

A Hilbert system Substructural logics

Representation - Frames

Title Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Lattice frames Residuated frames Formula hierarchy

FL 👘

Basic substructural logics Examples of frames (FL) Examples of frames (FEP) **GN** Gentzen frames

Proof

Applications of frames

Undecidability

Lattice frames

A *lattice frame* is a structure $\mathbf{W} = (W, W', N)$ where W and W' are sets and N is a binary relation from W to W'.

If L is a lattice, $W_L = (L, L, \leq)$ is a lattice frame.

For $X \subseteq W$ and $Y \subseteq W'$ we define $X^{\triangleright} = \{b \in W' : x \ N \ b, \text{ for all } x \in X\}$ $Y^{\triangleleft} = \{a \in W : a \ N \ y, \text{ for all } y \in Y\}$

The maps $\triangleright : \mathcal{P}(W) \to \mathcal{P}(W')$ and $\triangleleft : \mathcal{P}(W') \to \mathcal{P}(W)$ form a Galois connection. The map $\gamma_N : \mathcal{P}(W) \to \mathcal{P}(W)$, where $\gamma_N(X) = X^{\rhd \triangleleft}$, is a closure operator.

Lemma. If $\mathbf{L} = (L, \wedge, \vee)$ is a lattice and γ is a cl.op. on \mathbf{L} , then $(\gamma[L], \wedge, \vee_{\gamma})$ is a lattice. $[x \vee_{\gamma} y = \gamma(x \vee y).]$

Corollary. If **W** is a lattice frame then the *Galois algebra* $\mathbf{W}^+ = (\gamma_N[\mathcal{P}(W)], \cap, \cup_{\gamma_N})$ is a complete lattice.

If L is a lattice, W_L^+ is the Dedekind-MacNeille completion of L and $x \mapsto \{x\}^{\triangleleft}$ is an embedding.

Title Outline **RL** examples Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Lattice frames **Residuated frames** Formula hierarchy FL **Basic substructural logics** Examples of frames (FL) Examples of frames (FEP) GN Gentzen frames Proof Applications of frames Undecidability References

Residuated frames

A residuated frame is a structure $\mathbf{W} = (W, W', N, \circ, 1)$ where W and W' are sets $N \subseteq W \times W'$, $(W, \circ, 1)$ is a monoid and for all $x, y \in W$ and $w \in W'$ there exist subsets $x \setminus w, w \not| y \subseteq W'$ such that

 $(x \circ y) N w \Leftrightarrow y N (x \setminus w) \Leftrightarrow x N (w / y)$

If L is a RL, $\mathbf{W}_{\mathbf{L}} = (L, L, \leq, \cdot, \{1\})$ is a residuated frame.

A *nucleus* γ on a residuated lattice L is a closure operator on L such that $\gamma(x)\gamma(y) \leq \gamma(xy)$ (or $\gamma(\gamma(x)\gamma(y)) = \gamma(xy)$).

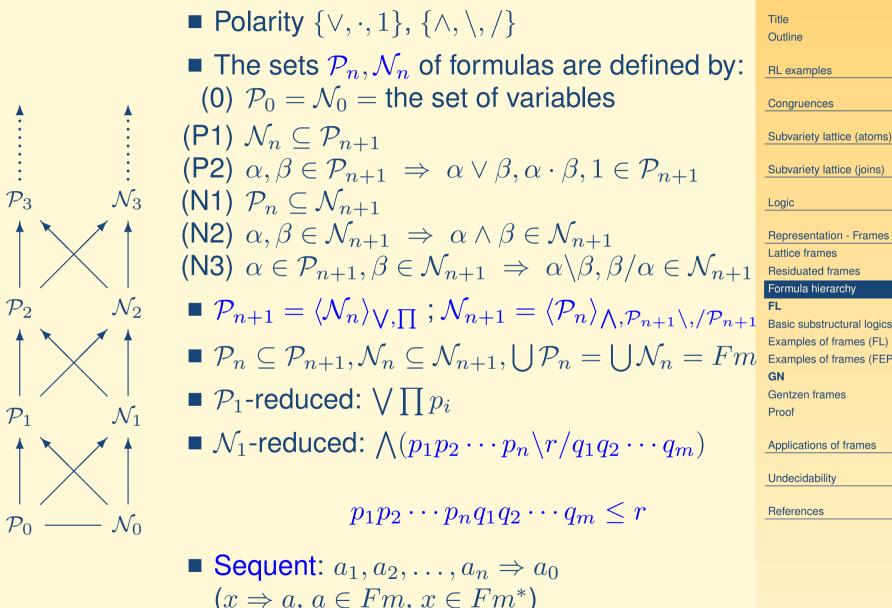
Theorem. Given a RL $\mathbf{L} = (L, \wedge, \vee, \cdot, \backslash, /, 1)$ and a nucleus on \mathbf{L} , the algebra $\mathbf{L}_{\gamma} = (L_{\gamma}, \wedge, \vee_{\gamma}, \cdot_{\gamma}, \backslash, /, \gamma(1))$, is a residuated lattice, where $x \cdot_{\gamma} y = \gamma(x \cdot y), x \vee_{\gamma} y = \gamma(x \vee y)$.

Theorem. If **W** is a frame, then γ_N is a nucleus on $\mathcal{P}(W, \circ, \{1\})$.

Corollary. If W is a residuated frame then the *Galois* algebra $W^+ = \mathcal{P}(W, \circ, 1)_{\gamma_N}$ is a residuated lattice. Moreover, for W_L , $x \mapsto \{x\}^{\triangleleft}$ is an embedding.

Title Outline **RL** examples Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Lattice frames Residuated frames Formula hierarchy FL **Basic substructural logics** Examples of frames (FL) Examples of frames (FEP) GN Gentzen frames Proof Applications of frames Undecidability References

Formula hierarchy



Subvariety lattice (joins) **Representation - Frames** Lattice frames **Residuated frames** Formula hierarchy Basic substructural logics Examples of frames (FL) Examples of frames (FEP) Gentzen frames Applications of frames Undecidability References

FL

$$\begin{array}{ll} \frac{x \Rightarrow a \quad y \circ a \circ z \Rightarrow c}{y \circ x \circ z \Rightarrow c} \ (\text{cut}) & \overline{a \Rightarrow a} \ (\text{Id}) \\ \hline \frac{y \circ a \circ z \Rightarrow c}{y \circ a \wedge b \circ z \Rightarrow c} \ (\wedge L\ell) \quad \frac{y \circ b \circ z \Rightarrow c}{y \circ a \wedge b \circ z \Rightarrow c} \ (\wedge Lr) \quad \frac{x \Rightarrow a \quad x \Rightarrow b}{x \Rightarrow a \wedge b} \ (\wedge R) \\ \hline \frac{y \circ a \circ z \Rightarrow c \quad y \circ b \circ z \Rightarrow c}{y \circ a \vee b \circ z \Rightarrow c} \ (\vee L) \quad \frac{x \Rightarrow a}{x \Rightarrow a \vee b} \ (\vee R\ell) \quad \frac{x \Rightarrow b}{x \Rightarrow a \vee b} \ (\vee Rr) \\ \hline \frac{x \Rightarrow a \quad y \circ b \circ z \Rightarrow c}{y \circ x \circ (a \setminus b) \circ z \Rightarrow c} \ (\wedge L) \quad \frac{a \circ x \Rightarrow b}{x \Rightarrow a \setminus b} \ (\wedge R) \\ \hline \frac{x \Rightarrow a \quad y \circ b \circ z \Rightarrow c}{y \circ (a \setminus b) \circ z \Rightarrow c} \ (\wedge L) \quad \frac{x \circ a \Rightarrow b}{x \Rightarrow a \setminus b} \ (\wedge R) \\ \hline \frac{y \circ a \circ b \circ z \Rightarrow c}{y \circ (a \setminus b) \circ x \circ z \Rightarrow c} \ (\wedge L) \quad \frac{x \circ a \Rightarrow b}{x \Rightarrow b / a} \ (/R) \\ \hline \frac{y \circ a \circ b \circ z \Rightarrow c}{y \circ a \cdot b \circ z \Rightarrow c} \ (\wedge L) \quad \frac{x \Rightarrow a \quad y \Rightarrow b}{x \circ y \Rightarrow a \cdot b} \ (\cdot R) \\ \hline \frac{y \circ z \Rightarrow a}{y \circ 1 \circ z \Rightarrow a} \ (1L) \quad \overline{\varepsilon \Rightarrow 1} \ (1R) \\ \end{array}$$

Title Outline **RL** examples Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Lattice frames **Residuated frames** Formula hierarchy FL Basic substructural logics Examples of frames (FL) Examples of frames (FEP) GN Gentzen frames Proof Applications of frames Undecidability

FL

$$\frac{x \Rightarrow a \quad u[a] \Rightarrow c}{u[x] \Rightarrow c} \text{ (cut)} \qquad \overline{a \Rightarrow a} \text{ (Id)}$$

$$\frac{u[a] \Rightarrow c}{u[a \land b] \Rightarrow c} (\land L\ell) \quad \frac{u[b] \Rightarrow c}{u[a \land b] \Rightarrow c} (\land Lr) \quad \frac{x \Rightarrow a \quad x \Rightarrow b}{x \Rightarrow a \land b} (\land R)$$

$$\frac{u[a] \Rightarrow c \quad u[b] \Rightarrow c}{u[a \lor b] \Rightarrow c} (\lor L) \quad \frac{x \Rightarrow a}{x \Rightarrow a \lor b} (\lor R\ell) \quad \frac{x \Rightarrow b}{x \Rightarrow a \lor b} (\lor Rr)$$

$$\frac{x \Rightarrow a \quad u[b] \Rightarrow c}{u[x \circ (a \backslash b)] \Rightarrow c} (\land L) \qquad \frac{a \circ x \Rightarrow b}{x \Rightarrow a \backslash b} (\land R)$$

$$\frac{x \Rightarrow a \quad u[b] \Rightarrow c}{u[(b/a) \circ x] \Rightarrow c} (\land L) \qquad \frac{x \circ a \Rightarrow b}{x \Rightarrow b/a} (\land R)$$

$$\frac{u[a \circ b] \Rightarrow c}{u[a \lor b] \Rightarrow c} (\land L) \qquad \frac{x \Rightarrow a \quad y \Rightarrow b}{x \Rightarrow b/a} (\land R)$$

$$\frac{u[a \circ b] \Rightarrow c}{u[a \lor b] \Rightarrow c} (\land L) \qquad \frac{x \Rightarrow a \quad y \Rightarrow b}{x \circ y \Rightarrow a \cdot b} (\cdot R)$$

$$\frac{|u| \Rightarrow a}{u[1] \Rightarrow a} (1L) \qquad \overline{z \Rightarrow 1} (1R)$$

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Logic
Representation - Frames
Lattice frames
Residuated frames
Formula hierarchy
FL
Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP)
GN
Gentzen frames
Proof
Applications of frames
Undecidability

Nikolaos Galatos, SSAOS, Třešt 2008

Basic substructural logics

If the sequent s is provable in **FL** from the set of sequents S, we write $S \vdash_{\mathbf{FL}} s$.

 $\frac{u[x \circ y] \Rightarrow c}{u[y \circ x] \Rightarrow c} (e) \quad (\text{exchange}) \quad xy \leq yx$ $\frac{u[x \circ x] \Rightarrow c}{u[x] \Rightarrow c} (c) \quad (\text{contraction}) \quad x \leq x^{2}$ $\frac{|u| \Rightarrow c}{u[x] \Rightarrow c} (i) \quad (\text{integrality}) \quad x \leq 1$

We write \mathbf{FL}_{ec} for $\mathbf{FL} + (e) + (c)$.

Theorem. The systems **HL** and **FL** are *equivalent* via the maps $s(\psi) = (\Rightarrow \psi)$ and $\phi(a_1, a_2, \ldots, a_n \Rightarrow a) = a_n \setminus (\ldots (a_2 \setminus (a_1 \setminus a)) \ldots);$

Title
Outline
RL examples
Congruences
Subvariaty lattice (stame)
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Lattice frames
Residuated frames
Formula hierarchy
FL
Basic substructural logics
Basic substructural logics Examples of frames (FL)
Basic substructural logics Examples of frames (FL) Examples of frames (FEP)
Basic substructural logics Examples of frames (FL)
Basic substructural logics Examples of frames (FL) Examples of frames (FEP) GN Gentzen frames
Basic substructural logics Examples of frames (FL) Examples of frames (FEP) GN
Basic substructural logics Examples of frames (FL) Examples of frames (FEP) GN Gentzen frames Proof
Basic substructural logics Examples of frames (FL) Examples of frames (FEP) GN Gentzen frames
Basic substructural logics Examples of frames (FL) Examples of frames (FEP) GN Gentzen frames Proof Applications of frames
Basic substructural logics Examples of frames (FL) Examples of frames (FEP) GN Gentzen frames Proof
Basic substructural logics Examples of frames (FL) Examples of frames (FEP) GN Gentzen frames Proof Applications of frames
Basic substructural logics Examples of frames (FL) Examples of frames (FEP) GN Gentzen frames Proof Applications of frames Undecidability

Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus).

We define the frame $\mathbf{W}_{\mathbf{FL}},$ where

- (W, ∘, ε) to be the free monoid over the set Fm of all formulas
- $W' = S_W \times Fm$, where S_W is the set of all *unary linear* polynomials $u[x] = y \circ x \circ z$ of W, and
- $\blacksquare \ x \ N \ (u,a) \ \text{iff} \vdash_{\mathbf{FL}} u[x] \Rightarrow a.$

For

 $(u,a) /\!\!/ x = \{(u[_\circ x],a)\} \text{ and } x \setminus\!\!\backslash (u,a) = \{(u[x \circ _],a)\},$ we have

$$\begin{array}{ll} x \circ y N(u,a) & \mbox{iff} \vdash_{\mathbf{FL}} u[x \circ y] \Rightarrow a \\ & \mbox{iff} \vdash_{\mathbf{FL}} u[x \circ y] \Rightarrow a \\ & \mbox{iff} \ x N(u[_ \circ y],a) \\ & \mbox{iff} \ y N(u[x \circ _],a). \end{array}$$

Title Outline **RL** examples Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Lattice frames **Residuated frames** Formula hierarchy FL **Basic substructural logics** Examples of frames (FL) Examples of frames (FEP) GN Gentzen frames Proof Applications of frames Undecidability References

Examples of frames (FEP)

Let A be a residuated lattice and B a partial subalgebra of A.

We define the frame $\mathbf{W}_{\mathbf{A},\mathbf{B}},$ where

- $(W, \cdot, 1)$ to be the submonoid of A generated by B,
- $W' = S_B \times B$, where S_W is the set of all *unary linear* polynomials $u[x] = y \circ x \circ z$ of $(W, \cdot, 1)$, and
- x N(u, b) by $u[x] \leq_{\mathbf{A}} b$.

5

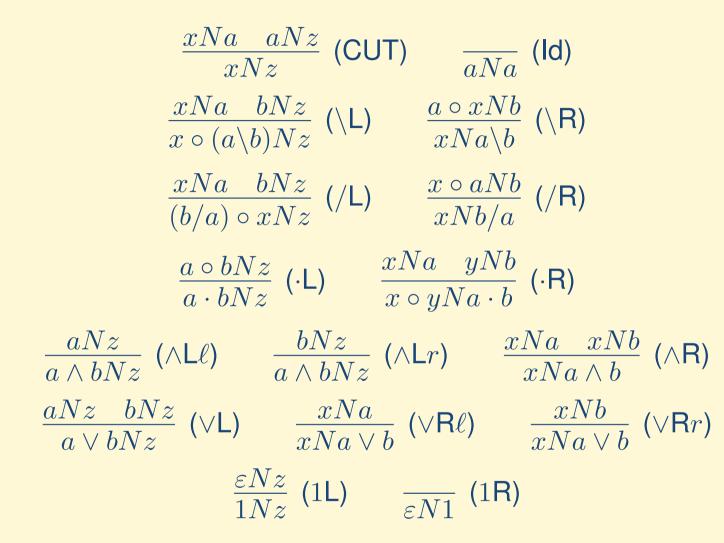
For

 $(u,a) \not /\!\!/ x = \{(u[_\cdot x],a)\} \text{ and } x \setminus\!\!\! \setminus (u,a) = \{(u[x \cdot _],a)\},$ we have

$$\begin{aligned} x \cdot y N(u, a) & \text{ iff } u[x \cdot y] \leq a \\ & \text{ iff } x N(u[_ \cdot y], a) \\ & \text{ iff } y N(u[x \cdot _], a) \end{aligned}$$

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Lattice frames
Residuated frames
Formula hierarchy
FL
Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP)
GN
Gentzen frames Proof
FIOUI
Applications of frames
Undecidability
References

GN



Title
Outline
RL examples
Congruonado
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
1 and a
Logic
Representation - Frames
Lattice frames
Residuated frames
Formula hierarchy
FL
Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP)
GN
Gentzen frames
Proof
Applications of frames
Undecidability
References

Gentzen frames

The following properties hold for W_L , W_{FL} and $W_{A,B}$:

- 1. \mathbf{W} is a residuated frame
- 2. B is a (partial) algebra of the same type, (B = L, Fm, B)
- 3. *B* generates (W, \circ, ε) (as a monoid)
- 4. W' contains a copy of B ($b \leftrightarrow (id, b)$)
- 5. N satisfies **GN**, for all $a, b \in B$, $x, y \in W$, $z \in W'$.

We call such pairs (\mathbf{W}, \mathbf{B}) Gentzen frames.

A *cut-free Gentzen frame* is not assumed to satisfy the (CUT)-rule.

Theorem. Given a Gentzen frame (\mathbf{W}, \mathbf{B}) , the map $\{\}^{\triangleleft} : \mathbf{B} \to \mathbf{W}^+, b \mapsto \{b\}^{\triangleleft}$ is a (partial) homomorphism. (Namely, if $a, b \in B$ and $a \bullet b \in B$ (\bullet is a connective) then $\{a \bullet_{\mathbf{B}} b\}^{\triangleleft} = \{a\}^{\triangleleft} \bullet_{\mathbf{W}^+} \{b\}^{\triangleleft}$).

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Lattice frames
Residuated frames
Formula hierarchy
FL
Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP)
GN
Gentzen frames
Proof
Applications of frames
Undecidability
References

Proof

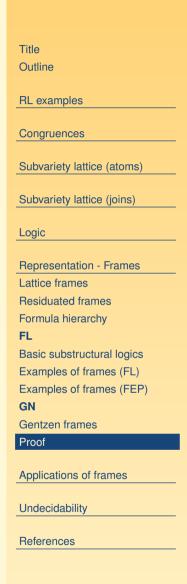
Key Lemma. Let (\mathbf{W}, \mathbf{B}) be a Gentzen frame. For all $a, b \in B, k, l \in \mathbf{W}^+$ and for every connective \bullet , if $a \bullet b \in B$, $a \in X \subseteq \{a\}^{\triangleleft}$ and $b \in Y \subseteq \{b\}^{\triangleleft}$, then 1. $a \bullet_{\mathbf{B}} b \in X \bullet_{\mathbf{W}^+} Y \subseteq \{a \bullet_{\mathbf{B}} b\}^{\triangleleft}$ ($1_{\mathbf{B}} \in 1_{\mathbf{W}^+} \subseteq \{1_{\mathbf{B}}\}^{\triangleleft}$) 2. In particular, $a \bullet_{\mathbf{B}} b \in \{a\}^{\triangleleft} \bullet_{\mathbf{W}^+} \{b\}^{\triangleleft} \subseteq \{a \bullet_{\mathbf{B}} b\}^{\triangleleft}$.

3. Furthermore, because of (CUT), we have equality.

Proof Let $\bullet = \lor$. If $x \in X$, then $x \in \{a\}^{\triangleleft}$; so xNa and $xNa \lor b$, by $(\lor \mathsf{R}\ell)$; hence $x \in \{a \lor b\}^{\triangleleft}$ and $X \subseteq \{a \lor b\}^{\triangleleft}$. Likewise $Y \subseteq \{a \lor b\}^{\triangleleft}$, so $X \cup Y \subseteq \{a \lor b\}^{\triangleleft}$ and $X \lor Y = \gamma(X \cup Y) \subseteq \{a \lor b\}^{\triangleleft}$.

On the other hand, let $X \lor Y \subseteq \{z\}^{\triangleleft}$, for some $z \in W$. Then, $a \in X \subseteq X \lor Y \subseteq \{z\}^{\triangleleft}$, so aNz. Similarly, bNz, so $a \lor bNz$ by (\lor L), hence $a \lor b \in \{z\}^{\triangleleft}$. Thus, $a \lor b \in X \lor Y$.

We used that every closed set is an intersection of *basic* closed sets $\{z\}^{\triangleleft}$, for $z \in W$.



Applications of frames

Title Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

DM-completion Completeness - Cut elimination

FMP FEP

Finiteness

Equations 1

Equations 2

Structural rules

Amalgamation-Interpolation

Applications

Undecidability

DM-completion

For a residuated lattice L, we associated the Gentzen frame $(\mathbf{W}_{L},\mathbf{L}).$

The underlying poset of W_{L}^{+} is the *Dedekind-MacNeille completion* of the underlying poset reduct of L.

Theorem. The map $x \mapsto x^{\triangleleft}$ is an embedding of L into $\mathbf{W}_{\mathbf{L}}^+$.

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
• • • • • • • • • • • •
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
DM-completion
Completeness - Cut elimination
FMP
FEP
Finiteness
Finiteness Equations 1
Equations 1 Equations 2
Equations 1
Equations 1 Equations 2 Structural rules Amalgamation-Interpolation
Equations 1 Equations 2 Structural rules
Equations 1 Equations 2 Structural rules Amalgamation-Interpolation Applications
Equations 1 Equations 2 Structural rules Amalgamation-Interpolation
Equations 1 Equations 2 Structural rules Amalgamation-Interpolation Applications

Completeness - Cut elimination

For every homomorphism $f : \mathbf{Fm} \to \mathbf{B}$, let $\overline{f} : \mathbf{Fm}_{\mathcal{L}} \to \mathbf{W}^+$ be the homomorphism that extends $\overline{f}(p) = \{f(p)\}^{\triangleleft}$ (*p*: variable.)

Corollary. If (\mathbf{W}, \mathbf{B}) is a cf Gentzen frame, for every homomorphism $f : \mathbf{Fm} \to \mathbf{B}$, we have $f(a) \in \overline{f}(a) \subseteq \downarrow f(a)$. If we have (CUT), then $\overline{f}(a) = \downarrow f(a)$.

We define $\mathbf{W_{FL}} \models x \Rightarrow c$ by $f(x) \ N \ f(c)$, for all f.

Theorem. If $\mathbf{W}_{\mathbf{FL}}^+ \models x \le c$, then $\mathbf{W}_{\mathbf{FL}} \models x \Rightarrow c$. Idea: For $f : \mathbf{Fm} \to \mathbf{B}$, $f(x) \in \overline{f}(x) \subseteq \overline{f}(c) \subseteq \{f(c)\}^{\triangleleft}$, so $f(x) \ N \ f(c)$.

Corollary. FL is complete with respect to W_{FL}^+ .

Corollary. The algebra W_{FL}^+ generates RL.

The frame W_{FLf} corresponds to cut-free FL. Corollary (CE). FL and FL^f prove the same sequents. Corollary. FL and the equational theory of RL are decidable.

Title Outline **RL** examples Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Applications of frames **DM**-completion Completeness - Cut elimination FMP FFP **Finiteness** Equations 1 Equations 2 Structural rules Amalgamation-Interpolation **Applications** Undecidability

Finite model property

For W_{FL} , given $(x, z) \in W \times W'$ (if z = (u, c), then $u(x) \Rightarrow c$ is a sequent), we define $(x, z)^{\uparrow}$ as the smallest subset of $W \times W'$ that contains (x, z) and is closed upwards with respect to the rules of FL^{f} . Note that $(x, z)^{\uparrow}$ is finite.

The new frame \mathbf{W}' associated with $N' = N \cup ((y, v)^{\uparrow})^c$ is residuated and Gentzen. Clearly, $(N')^c$ is finite, so it has a finite domain $Dom((N')^c)$ and codomain $Cod((N')^c)$. For every $z \notin Cod((N')^c)$, $\{z\}^{\triangleleft} = W$. So, $\{\{z\}^{\triangleleft} : z \in W\}$ is finite and a basis for $\gamma_{N'}$. So, \mathbf{W}'^+ is finite. Moreover, if $u(x) \Rightarrow c$ is not provable in **FL**, then it is not valid in \mathbf{W}'^+ .

Corollary. The system FL has the finite model property.

Corollary. The variety of residuated lattices is generated by its finite members.

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
DM-completion
Completeness - Cut elimination
FMP
FEP
Finiteness
Equations 1
Equations 2
Structural rules
Amalgamation-Interpolation
Applications
Undecidability
References

A class of algebras \mathcal{K} has the *finite embeddability property* (*FEP*) if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

Theorem. Every variety of integral RL's axiomatized by equartions over $\{\lor, \cdot, 1\}$ has the FEP.

- \blacksquare B embeds in $\mathbf{W}^+_{\mathbf{A},\mathbf{B}}$ via $\{_\}^{\lhd}:\mathbf{B}\rightarrow\mathbf{W}^+$
- $\blacksquare \ \mathbf{W}^+_{\mathbf{A},\mathbf{B}}$ is finite
- $\blacksquare \ \mathbf{W}_{\mathbf{A},\mathbf{B}}^{+} \in \mathcal{V}$

Corollary. These varieties are generated as quasivarieties by their finite members.

Corollary. The corresponding logics have the *strong finite model property*: if $\Phi \not\vdash \psi$, for finite Φ , then there is a finite counter-model, namely there is $\mathbf{D} \in \mathcal{V}$ and a homomorphism $f : \mathbf{Fm} \to \mathbf{D}$, such that $f(\phi) = 1$, for all $\phi \in \Phi$, but $f(\psi) \neq 1$.


```
Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
DM-completion
Completeness - Cut elimination
FMP
FEP
Finiteness
Equations 1
Equations 2
Structural rules
Amalgamation-Interpolation
Applications
Undecidability
References
```

Finiteness

Idea: As every element in $W^+_{A,B}$ is an intersection of basic elements. So it suffices to prove that there are only finitely many such elements.

Idea: Replace the frame $\mathbf{W}_{\mathbf{A},\mathbf{B}}$ by one $\mathbf{W}_{\mathbf{A},\mathbf{B}}^{\mathbf{M}}$, where it is easier to work.

Let M be the free monoid with unit over the set B and $f: M \rightarrow W$ the extension of the identity map.

$$M \xrightarrow{f} W \xrightarrow{N} W'$$

Title Outline **RL** examples Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Applications of frames **DM**-completion **Completeness - Cut elimination FMP** FEP Finiteness Equations 1 Equations 2 Structural rules Amalgamation-Interpolation **Applications** Undecidability

Equations 1

Idea: Express equations over $\{\vee, \cdot, 1\}$ at the frame level. For an equation ε over $\{\vee, \cdot, 1\}$ we distribute products over joins to get $s_1 \vee \cdots \vee s_m = t_1 \vee \cdots \vee t_n$. s_i, t_j : monoid terms. $s_1 \vee \cdots \vee s_m \leq t_1 \vee \cdots \vee t_n$ and $t_1 \vee \cdots \vee t_n \leq s_1 \vee \cdots \vee s_m$. The first is equivalent to: $\&(s_j \leq t_1 \lor \cdots \lor t_n).$ We proceed by example: $x^2y \leq xy \lor yx$ $(x_1 \lor x_2)^2 y \le (x_1 \lor x_2) y \lor y(x_1 \lor x_2)$ $x_1^2 y \lor x_1 x_2 y \lor x_2 x_1 y \lor x_2^2 y \le x_1 y \lor x_2 y \lor y x_1 \lor y x_2$ $x_1x_2y \le x_1y \lor x_2y \lor yx_1 \lor yx_2$

$$\frac{x_1y \le v \quad x_2y \le v \quad yx_1 \le v \quad yx_2 \le v}{x_1x_2y \le v}$$

$$\frac{x_1 \circ y \ N \ z \quad x_2 \circ y \ N \ z \quad y \circ x_1 \ N \ z \quad y \circ x_2 \ N \ z}{x_1 \circ x_2 \circ y \ N \ z} \ R(\varepsilon)$$

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Culturation (inima)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
DM-completion
Completeness - Cut elimination
FMP
FEP
Finiteness
Equations 1
Equations 2
Structural rules
Amalgamation-Interpolation
Applications
Undecidability
References

Equations 2

Theorem. If (\mathbf{W}, \mathbf{B}) is a Gentzen frame and ε an equation over $\{\vee, \cdot, 1\}$, then (\mathbf{W}, \mathbf{B}) satisfies $R(\varepsilon)$ iff \mathbf{W}^+ satisfies ε .

(The linearity of the denominator of $R(\varepsilon)$ plays an important role in the proof.)

Corollary If an equation over $\{\vee, \cdot, 1\}$ is valid in **A**, then it is also valid in $\mathbf{W}_{A,B}^+$, for every partial subalgebra **B** of **A**.

Consequently, $\mathbf{W}^+_{\mathbf{A},\mathbf{B}} \in \mathcal{V}$.

ītle
Dutline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
ogio
ogic
Representation - Frames
Applications of frames
OM-completion
Completeness - Cut elimination
MP
EP
initeness
Equations 1
Equations 2
Structural rules
Amalgamation-Interpolation
Applications
Indecidability
References

Structural rules

Given an equation ε of the form $t_0 \le t_1 \lor \cdots \lor t_n$, where t_i are $\{\cdot, 1\}$ -terms we construct the rule $R(\varepsilon)$

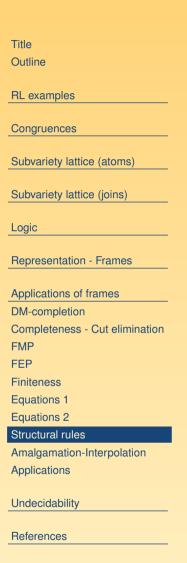
$$\frac{u[t_1] \Rightarrow a \quad \cdots \quad u[t_n] \Rightarrow a}{u[t_0] \Rightarrow a} \ (R(\varepsilon))$$

where the t_i 's are evaluated in (W, \circ, ε) . Such a rule is called *linear* if all variables in t_0 are distinct.

Theorem. Every system obtained from \mathbf{FL} by adding linear rules has the cut elimination property.

A set of rules of the form $R(\varepsilon)$ is called *reducing* if there is a complexity measure that decreases with upward applications of the rules (and the rules of **FL**).

Theorem. Every system obtained from **FL** by adding linear reducing rules is decidable. The subvariety of residuated lattices axiomatized by the corresponding equations has decidable equational theory.



Amalgamation-Interpolation

Given algebras $\mathbf{A}, \mathbf{B}, \mathbf{C}$, maps $f : \mathbf{A} \to \mathbf{B}$ and $g : \mathbf{A} \to \mathbf{C}$ and Gentzen frames $\mathbf{W}_{\mathbf{B}}, \mathbf{W}_{\mathbf{C}}$, we define the frame \mathbf{W} on $B \cup C$, where N is specified by $\Gamma_{\mathbf{B}}, \Gamma_{\mathbf{C}} N \beta$ iff there exists $\alpha \in A$ such that $\Gamma_{\mathbf{C}} N_{\mathbf{C}} g(\alpha)$ and $\Gamma_{\mathbf{B}}, f(\alpha) N_{\mathbf{B}} \beta$.

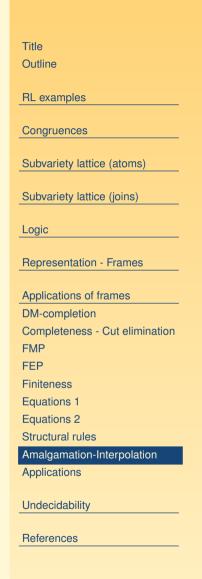
Theorem. W is a Gentzen frame. Hence ${}^{\triangleleft}: \mathbf{B} \cup \mathbf{C} \to \mathbf{W}^+$ is a quasihomomorhism.

Let $\mathbf{D} = \mathbf{W}^+$ and h, k the restrictions of \triangleleft to \mathbf{B} and \mathbf{C} .

Corollary. The maps $h : \mathbf{B} \to \mathbf{D}$ and $k : \mathbf{C} \to \mathbf{D}$ are homomorphisms. Moreover, injections and surjections transfer: If *f* is injective (surjective), so is *h*.

Corollary. Commutative RL has the amalgamation property (f, g injective) and the congruence extension property (f injective, g surjective).

Corollary. $\mathbf{FL}_{\mathbf{e}}$ has the Craig interpolation propety and enjoys the Local Deduction Theorem.



Applications

- Cut-elimination (CE) and finite model property (FMP) for FL, (cyclic) InFL. Generation by finite members for RL, InFL
- The finite embeddability property (FEP) for integral RL with $\{\lor, \cdot, 1\}$ -axioms.
- The strong separation property for HL
- The above extend to the non-associative case, as well as with the addition of suitable structural rules
- Amalgamation for commutative RL and interpolation for commutative FL
- (Craig) Interpolation, Robinson Property, disjunction property and Maximova variable separation property for FL_e
- Super-amalgamation, Transferable injections, Congruence extension property for commutative RL

Undecidability

Title Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

(Un)decidability

- Word problem (1)
- Word problem (2)
- Word problem (3)
- Word problem (4)
- Word problem (5)

References

(Un)decidability

Theorem. The quasiequational theory of RL is undecidable. (Because we can embed semigroups/monoids.) The same holds for commutative RL.

Theorem. The equational theory of modular RL is undecidable. (By transferring the corresponding result for modular lattices).

Theorem. The equational theory of commutative, distributive RL is decidable.

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
(Un)decidability
Word problem (1)
Word problem (2)
Word problem (3)
Word problem (4)
Word problem (5)
References

Word problem (1)

A finitely presented algebra $\mathbf{A} = (X|R)$ (in a class \mathcal{K}) has a *solvable word problem* (WP) if there is an algorithm that, given any pair of words over X, decides if they are equal or not.

A class of algebras has *solvable WP* if all finitely presented algebras in it do.

For example, the varieties of semigroups, groups, ℓ -groups, modular lattices have unsolvable WP.

Main result: The variety CDRL of commutative, distributive residuated lattices has unsolvable WP.

Outline RL examples Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic Representation - Frames Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic Representation - Frames Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic Representation - Frames Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Subvariety lattice (atoms) Subvariety lattice (joins) Logic Representation - Frames Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Subvariety lattice (joins) Logic Representation - Frames Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Subvariety lattice (joins) Logic Representation - Frames Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Logic Representation - Frames Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Logic Representation - Frames Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Representation - Frames Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3)
(Un)decidability Word problem (1) Word problem (2) Word problem (3)
(Un)decidability Word problem (1) Word problem (2) Word problem (3)
Word problem (1) Word problem (2) Word problem (3)
Word problem (2) Word problem (3)
Word problem (4)
Word problem (5)
References

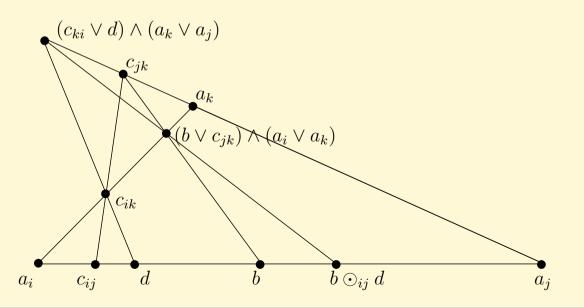
Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable.

Residuated lattices have a semigroup operation ·, but commutative semigroups have a decidable WP.

Alternative approach: Come up with another term definable operation \odot in residuated lattices that is associative.

Intuition: Coordinization in projective geometry and modular lattices.



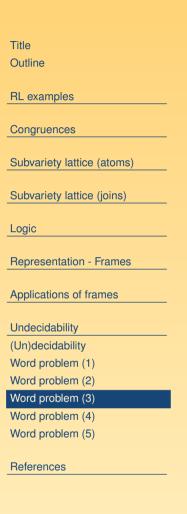
Title Outline **RL** examples Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Applications of frames Undecidability (Un)decidability Word problem (1) Word problem (2) Word problem (3) Word problem (4) Word problem (5) References

Word problem (3)

We define an *n*-frame in a residuated lattice consisting of elements a_1, \dots, a_n and c_{ij} , for $1 \le i < j \le n$ and satisfying certain conditions (the a_i 's are linearly independent, c_{ij} is on the line generated by a_i and a_j etc.). We use the operations \lor and \cdot .

We define the 'line' L_{ij} and the operation \odot_{ij} .

Theorem Given an 4-frame in a residuated lattice the algebra (L_{ij}, \odot_{ij}) is a semigroup.



Word problem (4)

Given a finitely presented semigroup S and a variety \mathcal{V} of residuated lattices, we construct a finitely presented residuated lattice $\mathbf{A}(\mathbf{S}, \mathcal{V})$ in \mathcal{V} .

Given a vector space \mathbf{W} , its powerset forms a distributive residuated lattice $\mathbf{A}_{\mathbf{W}}$.

Theorem If

1. \mathcal{V} is a variery of distributive residuated lattices containing $\mathbf{A}_{\mathbf{W}}$ for some infinite-dimentional vector space \mathbf{W} and

2. S is a finitely presented semigroup with unsolvable WP, then the residuated lattice A(S, V) in V has unsolvable WP.

In the proof we show that for every pair of semigroup words r, s,

S satisfies $r^{\cdot}(\bar{x}) = s^{\cdot}(\bar{x})$ iff $\mathbf{A}(\mathbf{S}, \mathcal{V})$ satisfies $r^{\odot}(\bar{x}') = s^{\odot}(\bar{x}')$.

Corollary The WP of CDRL is unsolvable.

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
(Un)decidability
Word problem (1)
Word problem (2)
Word problem (3)
Word problem (4)
Word problem (5)
References

Word problem (5)

A quasi-equation is a formula of the form

 $(s_1 = t_1 \& s_2 = t_2 \& \cdots \& s_n = t_n) \Rightarrow s = t$

The solvability/decidability of the WP states that given any set of equations $s_1 = t_1, s_2 = t_2, \ldots s_n = t_n$ there is an algorithm that decides all quasi-equations of the above form.

The solvability of the *quasi-equational theory* states that there is an algorithm that decides all quasi-equations of the above form.

Corollary The *quasi-equational* theory of CDRL is undecidable.

Corollary The *equational* theory of CDRL is decidable.

```
Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
(Un)decidability
Word problem (1)
Word problem (2)
Word problem (3)
Word problem (4)
Word problem (5)
References
```

References

Title Outline

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References

People Bibliography Bibliography

People

Some people involved:

P. BahlsP.F. BernadinelliT.W. BlokH.K. BlountL.A. CiabattoniJ.J. ColeK.R.P. DilworthC.N. GalatosC.J. HartM

P. Jipsen
T. Kowalski
H. Ono
L. Rafter
J. Raftery
K. Terui
C. Tsinakis
C. van Alten

M. Ward

Title Outline **RL** examples Congruences Subvariety lattice (atoms) Subvariety lattice (joins) Logic **Representation - Frames** Applications of frames Undecidability References People Bibliography Bibliography

N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated Lattices: an algebraic glimpse at substructural logics, Studies in Logics and the Foundations of Mathematics, Elsevier, 2007.

Bibliography

- P. Bahls, J. Cole, N. Galatos, P. Jipsen and C. Tsinakis, Cancellative Residuated Lattices, Algebra Universalis, 50(1) (2003), 83-106.
- F. Bernadinelli, H. Ono and P. Jipsen, *Algebraic aspects of cut elimination*, Studia Logics 68 (2001), 1-32.
- W. Blok and C. van Alten, On the finite embeddability property for residuated lattices, pocrims and BCK-algebras, Algebra & substructural logics (Tatsunokuchi, 1999). Rep. Math. Logic No. 34 (2000), 159–165.
- K. Blount and C. Tsinakis, *The structure of residuated lattices*, Internat. J. Algebra Comput. 13 (2003), no. 4, 437–461.
- A. Ciabattoni, N. Galatos and K. Terui. From Axioms to analytic rules in nonclassical logics, LICS'08, 229 240.
- A. Ciabattoni, N. Galatos and K. Terui. The expressive power of structural rules for FL, manuscript.
- N. Galatos. Equational bases for joins of residuated-lattice varieties, Studia Logica 76(2) (2004), 227-240.
- N. Galatos. Minimal varieties of residuated lattices, Algebra Universalis 52(2) (2005), 215-239.
- N. Galatos and P. Jipsen. Residuated frames and applications to decidability, manuscript.

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
References
People
Bibliography
Bibliography

Bibliography

N. Galatos, J. Olson and J. Raftery, Irreducible residuated semilattices and finitely based varieties, Reports on Mathematical Logic 43 (2008), 85-108.

N. Galatos and H. Ono. Algebraization, parameterized local deduction theorem and interpolation for substructural logics over FL, Studia Logica 83 (2006), 279-308.

N. Galatos and H. Ono. Glivenko theorems for substructural logics over FL, Journal of Symbolic Logic 71(4) (2006), 1353-1384.

N. Galatos and H. Ono. Cut elimination and strong separation for non-associative substructural logics, manuscript.

J. Hart, L. Rafter and C. Tsinakis, *The Structure of Commutative Residuated Lattices*, Internat. J. Algebra Comput. 12 (2002), no. 4, 509-524.

H. Ono, Semantics for substructural logics, Substructural logics, 259–291, Stud. Logic Comput., 2, Oxford Univ. Press, New York, 1993.

K. Terui, Which Structural Rules Admit Cut Elimination? - An Algebraic Criterion, JSL 72(3) (2007), 738–754.

C. van Alten and J. Raftery, *Rule separation and embedding theorems for logics without weakening*, Studia Logica 76(2) (2004), 241–274.

M. Ward and R. P. Dilworth, Residuated Lattices, Transactions of the AMS 45 (1939), 335–354.

Title
Outline
RL examples
Congruences
Subvariety lattice (atoms)
Subvariety lattice (joins)
Logic
Representation - Frames
Applications of frames
Undecidability
References
People
Bibliography
Bibliography