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Boolean algebras

A Boolean algebra is a structure A = (A, A, V,—,0,1) such e
that (we define —a = a — 0) [a — b = —a — B]
m (A, N, V,0,1)is a bounded lattice,

Relation algebras

| fOr a” a/, b, C E A, £-groups

Powerset of a monoid
Ideals of a ring

aNb<c<sb<a— c(A-residuation) e cuntod latices

Properties
Properties (proofs)

| fOI’ a” a & A, 1 = Qa (alt_ a \/ —qQ = ]_) Lattice/monoid properties

Linguistics (verbs)
Linguistics (adverbs)

Exercise. Distributivity (of A over V) and complementation Conarusnces
follow from the above conditions. Also, A-residuation can be S ubvarel e (atoms)
written equationally.

Subvariety lattice (joins)

Logic

Boolean algebras provide algebraic semantics for classical
propositional logic.

Representation - Frames

Applications of frames

Undecidability

Heyting algebras are defined without the third condition and
are algebraic semantics for intuitionistic propositional logic.

References




Algebras of relations

Let X be a set and Rel(X) = P(X x X) be the set of all e
binary relations on X.
RL examples
Boolean algebras
-
For relations R, and S, we denote by e
m R~ the complement and by R" the converse of R Coows
m A is the equality/diagonal relation on X S
. . Properties
m R: S the relational composition of R and S Prperies 1ot
Lattice/monoid properties
" R\S = (R;57)" and §/R = (57 ; )™ e
H R_>S: (Rﬂs_)_ :R_ US Congruences
Subvariety lattice (atoms)
We have Subvariety lattice (joins)
B (Rel(X),Nn,U,—,0, X?) is a Boolean algebra Logc
| (RGZ(X), , : A) IS a m0n0|d Representation - Frames

Applications of frames

mforall R,S,T € Rel(X),

Undecidability

R;SgT@SgR\T@RgT/S. References




Relation algebras

A Relation algebra is a structure
A=(ANV,;,\,/,0,1,() ) suchthat (0=17)
m (A AV, L, T,()")is aBoolean algebra

(we define L=1A1"and T =1V 17),

m (A ;, 1)isamonoid
m forall a,b,c € A,

a;b<c<sb<a\ce a<c/b(residuation)

mforalla € A, -—a = a (we define —a = a\0 = 0/a)
m ~(a7) = (ma)” and ~(-z; ~y) = (7 ;97)"

Title
Outline

RL examples
Boolean algebras
Algebras of relations

Relation algebras
£-groups

Powerset of a monoid
Ideals of a ring
Residuated lattices
Properties

Properties (proofs)
Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability
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/-groups

A lattice-ordered group is a lattice with a compatible group me
structure. Alternatively, a lattice-ordered group is an algebra B
L _ (L, /\’ \/, ., \7 /7 1) SUCh that Boolean algebras

Algebras of relations

m(L,A,V)is a lattice, E—
m (L, -, 1)is amonoid Foverel ool |

Residuated lattices

u fOI’ a” CL, b, C E L, Properties

Properties (proofs)

ab<ceb<a\cesa<cl/b e
Linguistics (adverbs)
u for a” a € L, a - CL_l — ]. (We deflne le_l — CC\l = 1/33). Congruences

Subvariety lattice (atoms)

Example. The set of real numbers under the usual order,
addition and subtraction.

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Powerset of a monoid

Let M = (M, -, e) be a monoid and X,Y C M. .
We define X ° Y — {33 ° y . L E X, y E Y}S RL examples
X\Y _ {Z c M : X . {Z} g Y}, Boolean algebras

Y/X={zeM:{z} - X CY}. e

£-groups

For the powerset P(M), we have ceals o a g

Residuated lattices

m (P(M),N,V) is a lattice e

Properties (proofs)

[ | (P(M), ., {6}) iS a mOﬂOid Lattice/monoid properties

Linguistics (verbs)

[ | for a” X’ Y, Z g M, Linguistics (adverbs)

Congruences

X ° Y g Z <IF> Y g X\Z <f,> X g Z/Y. Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Ideals of a ring

Let R be a ring with unit and let Z(R) be the set of all me
(two-sided) ideals of R. L examples
For I7 J = I(R), we erte IJ p— {Zfzn Z] . 7/ c I,] ~ J} Boolean algebras

Algebras of relations

I\e] = {k’ . Ik' g J}, Relation algebras

£-groups

J/I — {k . kl g J} owerstofamonoid

Residuated lattices

For the powerset Z(R.), we have Propertes

Properties (proofs)

| (I(R)) m, U) iS a Iattice Lattice/monoid properties

Linguistics (verbs)

H (’__7:(]_:{)7 o R) |S a mon0|d Linguistics (adverbs)
R Congruences
m for all ideals I, J, K of R, :

Subvariety lattice (atoms)

I . J g K <:‘,> J g I\K <:> I g K/J Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Residuated lattices

A residuated lattice, or residuated lattice-ordered monoid, is e
an algebra L — (L7 /\7 \/7 K \7 /7 ]‘) SUCh that RL examples
N (L, /\’ \/) |S a |attICe, Boolean algebras

Algebras of relations

[ | (L’ ., 1) |S a mon0|d and Relation algebras

£-groups

Powerset of a monoid

| fOr a” CL, b, C E L, Ideals of a ring

Properties

CLb S C <f/> b S CL\C <:> a S C/b Properties (proofs)
Lattice/monoid properties
Linguistics (verbs)

(We think of x\y and y/x as + — y, when they are equal.) Re——

Congruences

A pointed residuated lattice an extension of a residuated
lattice with a new constant 0. (~z = z\0 and —z = 0/z.)

Subvariety lattice (atoms)

Subvariety lattice (joins)

A (pointed) residuated lattice is called Logi

m commutative, if (L, -, 1) is commutative (zy = yx). Representation - Frames
m distributive, if (L, A, V) is distibutive Applations o rames
m integral, if it satisfies x < 1 Undecidabilty

References

m contractive, if it satisfies = < 2
m involutive, if it satisfies ~—x = 2 = —~uz.



Properties

1. z(yVz)=ayVazand (yV z)r =yx V zx e
2. x\(y A z) = (z\y) A (z\2) and (y A z) [z = (y/z) A (2/7) oL s
3. 2/(yVz) = (z/y) N(z/z) and (y vV z)\z = (y\z) A (2\z) gb::
4 (z/y)y < wandy(y\z) <
5. x(y/z) < (zy)/z and (2\y)z < z\(y=) et s
6. (2/y)/= = o/ (2y) and \(y\z) = (v2)\a
7. 2\0/9) = e\
8. xz/l=x=1\z s
9. 1<z/rand 1 < x\z Subvariety latie (atoms
10. 2 < y/(\y) and = < (y/a)\y
1. y/((y/x)\y) = y/z and (y/(z\y))\y = z\y e
2. 2/(e\e) = and 2/} = S
13. (2/y)(y/z) < z/z and (z\y)(y\z) < z\z p—

Multiplication is order preserving in both coordinates. Each
division operation is order preserving in the numerator and
order reversing in the denominator.

References




Properties (proofs)

ZC(y\/Z) Sw </;}y\/z SCE\’U] -(l;ittJI?Iine
</;> y? < S x\w Il;“o_o(T)e(er:1 Z:::bras

Algebras of relations
Relation algebras

S ay,rz < w

£-groups

<l;> xy \/ Iz S w Powerset of a monoid
Ideals of a ring
Residuated lattices

Properties
:C/y S ':C/y :> (x/y)y S L Properties (proofs)
Lattice/monoid properties
Linguistics (verbs)
Linguistics (adverbs)

x(y/z)z < xy = z(y/2) < (zy)/=

Congruences

Subvariety lattice (atoms)

(z/y)/2](zy) < z = (z/y)/z < z/(2y)
x/(zy)|zy <z =x/(2y) < (z/y)/z Logi

Representation - Frames

w<z\(y/z) < zw<y/z s
<~ TWZ S Yy Undecidability
<’;> Wz S :C\y References

& w < (2\y)/z



Lattice/monoid properties

(2/y)(y/2)x < (2/y)y < 2 = (2/y)(y/z) < z/x

RL examples

Boolean algebras
Algebras of relations
Relation algebras

RLs satisfy no special purely lattice-theoretic or boows

monoid-theoretic property. et
esiduated lattices
Properties

Every lattice can be embedded in a (cancellative) residuated Properties (roofs

Lattice/monoid properties

| att | Ce Linguistics (verbs)

Linguistics (adverbs)

Congruences

Every monoid can be embedded in a (distributive) residuated
lattice.

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Linguistics (verbs)

We want to assign (a limited number of) linquistic types to e
English words, as well as to phrases, in such a way that we N
will be able to tell if a given phrase is a (syntacticly correct) EEAEEE
Algebras of relations
Se nte n Ce . Relation algebras
£-groups
We will use n for ‘noun phrase’ and s for ‘sentence’. o monee
Residuated lattices
For phrases we use the rule: if A:a and B : b, then AB : ab. R
roperties (proofts
We write C': a\bif A : a implies AC : b, for all A.
Linguistics (adverbs)
Likewise, C : b/a if A: aimplies C'A : b, for all A. Sonaruencns
We assign type n to ‘John.” Clearly, ‘plays’ has type n\s, as Sl G,
all intransitive verbs. Subvariety latis oine)
John plays roge
n(n\S) S ) Representation - Frames
n n\s

Applications of frames

Some words may have more than one type. We write a < b if
every word with type a has also type b.

Undecidability

References




Linguistics (adverbs)

JOhn Ia S here TittJIeine
s ey n\)(s\s) <s(s\s) <5
n n\ S S \ o RL examples
Boolean algebras
John (plays here) Rt s

o on\s  (n\s)\(n\s) 3\ < (m\s)\(n\)

Ideals of a ring
Residuated lattices

Note that ‘plays’ is also a transitive verb, so it has type caprie (rof)
he o

Linguistics (adverbs)

John (plays football)
[n((n\s)/n)ln < 5
n (n\ S) /n n Subvariety lattice (atoms)

(John  plays) football (n\s)/n < n\(s/n) bty s (o
no n\(s/n) n[(n\(s/n))n] < s

Representation - Frames

Also, for ‘John definitely plays football’, note that we need to St e
have S\S S (n\s)/(n\s) Undecidability

References

Q: Can we decide (in)equations in residuated lattices?



Congruences

Title
Outline

RL examples

Congruences
Congruences G, B

Congruences R, M
Congruences and sets
Correspondence

CNM to CNS

CNS to congruence
CNS to congruence
Lattice isomorphism
Compositions
Generation
Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Congruences G, B

Definition. A congruence on an algebra A is an equivalence ™
relation on A that is compatible with the operations of A.
(Alt.the kernel of a homomorphism out of A.)

RL examples

Congruences

| Congrnces 6.5 |
Congruences in groups correspond to normal subgroups. cononenees A
. Correspondence
Given a congruence 6 on a group G, the congruence class ONM 10 ONS
1] of 1 is a normal subgroup. e

Lattice isomorphism

Given a normal subgroup N of a group G, the relation f isa  compsions

Generation

congruence, where (a,b) € Oy iff a\b € N iff {a\b,b\a} C N. Generation of GNM

Subvariety lattice (atoms)

Congruences in Boolean algebras correspond to filters.

Subvariety lattice (joins)

Given a congruence 6 on a Boolean algebra A, the Logio
congruence class [1]y of 1 is a filter of A. Representation - Frames
Given a filter F' of a Boolean algebra A, 0 is a congruence, Applcatons o rames
where (CL, b) -~ HF iff a — b € F iff {a — b7 b — CL} C F. Undecidability

References

Note that a filter is a subset of A closed under {A,V, —, 1}
that is convex (xr <y < zand z,z € F implies y € F).



Congruences R, M

Congruences on rings correspond to ideals. Tie

Outline

RL examples

Congruences on /-groups correspond to convex £-Subgroups.  conguences

Congruences G, B

Congruences R, M

Congruences and sets

Congruences on monoids do not correspond to any .
particular kind of subset. -

CNS to congruence
Lattice isomorphism
Compositions

Do congruences on residuated lattices correspond to certain cenerdton
subsets?

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Congruences and sets

Let A be a residuated lattice and a,z € A. We define the e
conjugates A\, (x) = [a\(za)] A1 and p,(z) = ax/a A 1. N
An jterated conjugate is a composition v,, (Ya, (- - - Ya, (2))), Congruences
. Congruences G, B
Where n E w, a/17 CLQ, o o e ,a/n E A and /7617; E {)\aﬂi7pai}’ for a” 1. CongruencesR,M
. 0 0n O . Correspondence
X C Ais called normal, if it is closed under conjugates. e
to congruence
CNS to congruence
We will be considering correspondences between: Lt oo
= Congruences on A -
m Convex, normal subalgebras (CNSs) of A Subvarity latic (atoms)
m Convex , normal (in A) submonoids (CNMs) of A= = 1 Subvartely latics (oine)
m Deductive filters of A: FFC A == |
‘ Tl g F Representation - Frames
® a,a\be Fimpliesbe F (eqv. T F =F) FPPICEIOns SIS
¢ g c Fimpliesa Al e F (eqv. Fis A-closed) B
¢ o € F implies b\ab,ba/b € F eenees



Correspondence

If S'is a CNS of A, M a SNM of A—, 6 a congruence on A me
and F a DF Of A., then RL examples

1. My(S) =57, M.(0) =[1], and M;(F) = F~ are SNMs =~ Conuences

Congruences G, B

Of A. o y Congruences R, M

= — — uenc d -
2. Sm(M) — :‘(M)! Sc(e) = [1]9 and Sf(F) — :(F ) are _CNMtoCNS
i o o
3. F,(S)=18, F,(M)=1M,and F.(0) = 1[1]y are DFs of comntone

Generation
A. . Generation of CNM

4_ @S(S) — {(a/’ b)|a/<_>b c S}, @m(M) — {(a’, b)‘CL(_) b c M} Subvariety lattice (atoms)
and @f(F) — {(a,’ b)|a<—> b = F} — {(CL, b)|&\b, b\a c F} Subvariety lattice (joins)

are congruences of A. Logic
Representation - Frames
a <— b = a,\b /\ b\a, /\ ]_ Applications of frames
Undecidability

E(X)={acA:z<a<2z\l,forsomez c X}.

References




CNM to CNS

(M) ={ae Alx <a <z\l,forsome z € M} is a CNS. e

Claim: a € =(M) iff dy,z € M such that y < a < z\1. AL cxamples
Indeed, yz <y <a<2\1<yz\landyz € M. o
Convexity: If a,b € Z(M), then 3z, y € M such that e e
r<a<z\landy <b < y\L
lfa <c<bthenz <a<c<b<y\lsoceZ(M). bt ot
Subalg.: zy <z Ay <aAb<z\l1Ay\l =(xVy\l <z\l oot

Generation
Generation of CNM

r<zVy<aVb<z\1Vy\l<(zAy\l < (xy)\1

Subvariety lattice (atoms)

vy < ab < (\D(\D) < 2\(G\1) = (po)\1
Aalye) < a\yea < a\[y/(#\D]a < a\[/ala < a\b < 2\(\1) = Yoo o
vy < 2/(\) < a/b < (D\1)/y < [2pen @I\

Undecidability

(for u = (x\1)/y we have zp,(y)u < x{uy/u}tu < zuy < 1)
Normality: As Ac(z)Ac(z\1) < c\x(z\l)c A1l <c\eN1l=1,

Ac() < Acla) < Ac(z\1) < Ac(z)\1

References




CNS to congruence

O:(5) = {(a,b)|la< b € S} is a congruence. e
a—b=a\bAb\aANl
RL examples
Equivalance: ©,(5) is reflexive and symmetric. If Congrrees_
a—b,b—c e S, we have ST
Congruences and sets
(a—Db)(bc) A (b c)(aeb) < A
< (a\D)(B\&) A (A\D)(B\a) A1 < (ame) < 1. s o
omposmons

Generation
Generation of CNM

Comptibility: Assume a«+—b € S and c € A.

Subvariety lattice (atoms)

a\b < ca\cb implies a+b < ca<cb <1

Subvariety lattice (joins)

Ae(a—b) <c\(a\b)cAc\(b\a)cNe < acebc <1 Logc

Representation - Frames

(anc)-(a<—Db) <alab) ANc(ab) <bAcimplies
a—b<(aANc)\(bAc). Likewise,a<—b < (bAc)\(aAc). So, P
a <— b S (CL /\ C) <_>(b /\ C) S ]. References

a\b < (c\a)\(c\b) and b\a < (c\b)\(c\a) imply
a—b<(c\a)—(c\b) <1

Applications of frames




CNS to congruence

a\b < (a\c)/(b\c) and b\a < (b\c)/(a\c) imply o
a+—b< (a\c)<—>’(b\c) <1 RL examples

Where a <_>, b — Cb/b VAN b/a AN 1 Congruences

Congruences G, B

Congruences R, M
/ Congruences and sets

SO’ (CL\C) N (b\C) S S and (CL\C) H(b\C) S S' Correspondence
CNM to CNS
CNS to congruence

. c / H CNS to congruence

Clalm a<— b E S Iff a <— b E S Lattice isomorphism

Compositions

Mp(a="D) = b\[a/bAb/aN1]bAT <Db\a Al Gereraior

Generation of CNM

Subvariety lattice (atoms)

Subvariety lattice (joins)

Ap(a"b) A Ag(a"d) <a—b< 1

Logic

Representation - Frames

Applications of frames

Undecidability

References




Lattice isomorphism

1. The CNSs of A, the CNMs of A~ and the DF of A form e
lattices, denoted by CNS(A), CNM(A) and Fil(A),

. RL examples
respectively. N
2. All the above lattices are isomorphic to the congruence e
lattice Con(A) of A via the maps defined above. oneences and et
3. The composition of the above maps gives the NS b oo
corresponding map; e.g., Ms(S.(0)) = M.(0).
Compositions
Claim: S, and ©, are inverse maps. Comraton of A
S — [1]@8(5’): a E S ImplleS a <— 1 — CL\]. /\ a /\ ]. E S Subvariety lattice (atoms)
Conversely, (CL < 1) S a S (CL < 1)\1 Subvariety lattice (joins)
0 = 0,(S.(0)): If (a,b) € O4([1]y), then a b € [1]y, SO e
a<— b6 1. Therefore, a § a(a+ b) < a(a\b) <b,soaVbbb. e
Likewise, a Vb 6 a, SO a 0 b. e
Undecidability

Conversely, if a 6 b, then
1= (a\a Ab\bA1)O (a\bAb\aA1l)=ab.

References




Compositions

Claim: Sf(F) = Sc(@f(F)) (SketCh) Title

Outline

If a E SC(@f(F))s then a @f(F) 1, SO a\l’ ]_\a E F_ RL examples
HenCe a, ]./CL c F. SInCG 1 - F, we get T = qa /\ ]./CL A1l c F—. Congruences

Congruences G, B

Obviously, x < a;also a < (1/a)\1 < x\1. Congruences R, M

Congruences and sets

Th US, a E Sf (F) 5 Correspondence

CNM to CNS

CNS to congruence

Conversely, if a € S¢(F),then x < a < z\1,forsome z € F~.  cxswconguence

Lattice isomorphism

So,a € Fand1/(x\1) <1/a.
Since, < 1/(z\1), we have z < 1/aand 1/a € F. E—
ThUS bOth a//]. and 1/& are in F HenCe, a E [1]@f(F)- Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Generation

If X is a subset of A~ and Y is a subset of A, then e
1. the CNM M (X)) of A~ generated by X is equal to AL oxarmples
E_HF(X) Congruences

Congruences G, B

2. The CNS S(Y) of A generated by Y is equal to ZIII'A(Y").  ConaruencesR,m

Congruences and sets

3. The DF F'(Y') of A generated by Y C A is equal to Conespondence
THF(Y) — THF(Y /\ 1)_ CNS to congruence

CNS to congruence

4. The congruence O(P) on A generated by P C A% isequal g

Compositions

to ©,,(M(P')), where P’ = {a < b|(a,b) € P}.

Generation of CNM

Subvariety lattice (atoms)

XANl={zAl:2€ X}

Subvariety lattice (joins)

AX)={z—1l:z€ X} »
I(X) ={z122- - 2pn :n > 1,2, € X} U{l} TR
['(X) = {v(z) : v is an iterated conjugate } poplcatons o rames
Z(X)={a€A:z <a<az\l,for somez € X} sty
Z(X)={ac€A:x<a<1, forsomezxc X} e
a—b=a\bAb\aNl



Generation of CNM

Clearly, if M is a CNM of A~ that contains X, then it T
contains I'(X), by normality, IIT'(X ), since M is closed under

product, and =~ IIT'(X), since M is convex and contains 1. :Lgpl

We will now show that =~ TII'( X)) itself is a CNM of A~; it e

obviously contains X. It is clearly convex and a submonoid of  congrences anases

A~. To show that it is convex, consider a € Z~III'(X) and N

u € A. There are x4, ..., z, € X and iterated conjugates NSt congruanee

Yy, Yn SUCh that v1(z1) -+ - v (2,) < a < 1. We have oo
Generation

H)‘u(%(xz)) < )‘u(H”Yz(xz)) < AU(G) <L

Idea for n = 2:

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

Ay(ar) Ay (az) = (u\a1u A 1) (u\asu A 1) < (u\aju)(u\asw) A1 Repesenttion Frames

Applications of frames

S U,\CL1U(U\CLQU) A1 S U,\Cl,lCLQU N1 = )\u (alaQ)' Undecidability

Also, Ay (vi(z;)) € I'(X) and [ [ Au(vi(x;)) € TIT'(X), so Refernces
Ay (a) € E7IIIN(X). Likewise, we have p,(a) € Z71II'(X).




Subvariety lattice (atoms)

Title
Outline

RL examples

Congruences

Subvariety lattice (atoms)
Size

BA and 2

BA: an atom

Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Size

We view RL as the subvariety of RL, axiomatized by 0 = 1. Title

Outline

RL examples

The subvariety lattices of HA (Heyting algebras) and Br
(Brouwerian algebras) are uncountable, hence so are A(RL,)

Congruences

Subvariety lattice (atoms)
and A(RL). T —
BA and 2
BA: an atom
We Wl ” Fin. gen. atoms

Cancellative atoms
Idempotent rep. atoms

m determine the size of the set of atoms in A(RL,).

Subvariety lattice (joins)

m outline a method for finding axiomatizations of certain Logic
Varl etl eS Representation - Frames

Applications of frames

B give a description of joins in A(RL,).

Undecidability

References




BA and 2

The variety BA of Boolean algebras is generated by the
2-element algebra 2. BA = HSP(2)= V(2).

H: homomorphic images
S: subalgebras

P: direct products

V = HSP

Proof idea: Use the prime ideal-filter theorem for distributive
lattices to show that every Boolean algebra is a subdirect
product of copies of 2.

Subdirect product. A subalgebra of a product such that all
projections are onto.
Clearly, 2 is subdirectly irreducible.

Subdirectly irreducible: non-trivial and
m it cannot be written as a subdirect product of a family that
does not contain it.

m Alt. its congruence lattice is A U T p.
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Size

BA: an atom

Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability
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BA: an atom

The variety BA is an atom in the lattice of subvarieties of pRL. Tt

Outline

pRL is a congruence distributive variety (RLs have lattice AL examples
reducts) so Jonsson’s Lemma applies: Congruences
Given a class K C RL,, the subdirectly irreducible algebras Subaiens s e
V(K)sr in the variety generated by a K are in HSPy(K).
An ultraproduct A € Py(K) is obtained by taking Iczgpup
u a prOdUCt H'LEI AZ Of AZ E IC and then Subvariety lattice (joins)
m a quotient [ [,.; A;/ =y by an ultrafilter U over I (maximal Logic
fllter O_n P(U)): B Representation - Frames
fOI’ C_L, b G H’LEI A,“ C_I, %U b |ff {’[, E I : a”l p— b’l,} E U Applications of frames

Undecidability

First order formulas persist under ultraproducts.
Now, HSPy(2) = {2,1}, hence (V(2))sr = {2}.
Recall that V = V(Vgs7).

References




Fin. gen. atoms

We define Tu = uT = w.

Note that T,, is strictly sim-
ple (has no non-trivial subal-
gebras or homomorphic im-
ages).

So, V(T,) is an atom of
A(RL).

Moreover, all these atoms
are distinct and A(RL) has
at least denumerably many
atoms.
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Idempotent rep. atoms
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Logic
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Applications of frames

Undecidability
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Cancellative atoms

Left cancellativity (ab = ac = b = ¢) can be written
equationally: x\(xy) = y. Right cancellativity is (yx)/x = v.
CanRL denotes the variety of cancellative RLs.

Prop. There are only 2 cancellative atoms: V(Z) and V(Z™).

Let L € CanRL. Fora <1, we have 1 < 1/a.
Claim: If 3a < 1 with 1/a = 1, then Sg(a) = Z~.

Since a < 1, we get a"™! < o, for all n € N, by order
preservation and cancellativity. Moreover, a**" /a™ = a* and
a™/a™ Tk =1, for all m, k € N.

Claim: If for all x < 1, we have 1 < 1/x, then L is an ¢-group.
Fora € Lsetx = (1/a)a. Notethat z < 1, and if z < 1, then
1/x=1/(1/a)a = (1/a)/(1/a) = 1, cancellativity; so z = 1.
The negative coneofa RL A = (A, A, V,-,\,/,1) is the RL
A== (A AV, \Y /A 1), where A= ={ae A:a <1},
a\* b= (a\b)Alandb/A a= (b/a) A1.
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Idempotent rep. atoms

For S C Z, we define .

azbz = Ay, |fZ S S and RL examples

CLzbZ — bz, If Z Q S Congruences
Although’ We may have ziuzt;variety lattice (atoms)

BA and 2
BA: an atom

m ST, but Ng = Ny

B Ng % N, but
V(Ng) # V(N7)

m V(Ng) is not an atom

there are still continuum
many atoms V(Nyg).

Fin. gen. atoms
Cancellative atoms
Idempotent rep. atoms

Subvariety lattice (joins)

Logic

Representation - Frames

Applications of frames

Undecidability

References




Subvariety lattice (joins)
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Representable RL's

A residuated lattice is called representable (or semi-linear) if e
it is a subdirect product of totally ordered RLs. RRL denotes
the class of representable RLs.

RL examples

Congruences

Recall that a totally ordered RL satisfies the first-order Subvariely latice (atoms)
fOFmU|a (\le, y) (ZU S y Or y S x) [(VCE, y)(l S [L’\y Or ]_ S y\x)] Subvariety lattice (joins)
Represeniabe Als |
Representable Heyting algebras form a variety axiomatized i st
by 1 = (z —y)V (y — ). i
Representable commutative RLs form a variety axiomatized romatectior
by 1 S (a}' — y)/\]_ \V (y — Qj)/\l_ Eilr;ir:ae?;c:;;atization
RRL is a variety axiomatized by 1 < 1 (z\y) V 72 (y\x). o
Goal: Given a class K of RLs axiomatized by a set of Roprosentaton - Framos
positive universal first-order formulas (PUF’s), provide an Applatons offames
axiomatization for V(IC) Undecidability

References




Joins

The meet of two varieties in A(RL,) is their intersection. e
Also, if V; is axiomatized by E, and Vs by E5, then V; A Vs is AL examples
axiomatized by F; U FEs. Congruences
On the other hand, the join of two varieties is the variety Sene e o
generated by their union. A
Also, if V; is axiomatized by E4 and Vs, by E5, then V; vV Vs —
may not be axiomatized by E; N Es. e
ot
Goals RAL
Finite axiomatization
Elementarity
®m Find an axiomatization of V; V Vs, in terms of E; and Es. Aeplcations

Logic

m Find situations where: if £; and E5 are finite, then V; VvV Vs Representaion - Frames
iS finitely aXiomatiZGd Applications of frames

Undecidability

m Find V such that its finitely axiomatized subvarieties form a
lattice.

References




Finite basis

If V is a congruence distributive variety of finite type and
Vrgr is strictly elementary, then V is finitely axiomatized.

Strictly elementary: Axiomatized by a single FO-sentence.
Finitely SI: A is not the intersection of two non-trivial
congruences.

Cor. For every variety V of RLs, if Vrg; is strictly elementary,
then the finitely axiomatized subvarieties of V form a lattice.

Pf. For finitely axiomatized subvarieties V;, Vs,
V1V Wo)rsr = (V1 U V) gy is strictly elementary.

Let V1, V> be subvarieties of RL axiomatized by E1, Es,
respectively, where E,, E5 have no variables in common.

The class V; UV, is axiomatized by the universal closure of
(AND E7) or (AND E5), over infinitary logic, which is equivalent
to the set {WW(ey oreq) : €1 € Fq,e2 € Ey} Of positive
universal first-order formulas (PUFs).
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FSI

In a RL, we say that 1 is weakly join irreducible, if for all
negative a, b, whenever 1 = v(a) VvV ~/(b), for all all iterrated
conjugates v, 7', thena =1orb = 1.

Thm. A RL is FSI iff 1 is weakly join-irreducible.

(<) Let F,G be CNS with FNG = {1}. Foralla € F~ and
be G—,1=~(a)V~(b),for all iterated conjugates, because
if v(a),7(b) <u,thenuANle FNG={1},s01 <wu. Since 1
Is weakKly join-irreducible, a = 1 or b = 1.

(=) Let a, b be negative elements and assume that

u € CNS (a)NCNS~(b). Then there exist products of
iterated conjugates p, q of a, b, resp., such that p,q < u. If
1 =~(a) V~'(b), for all iterated conjugates, then1 =pV q.
Thus,u=1and CNS~(a) NCNS~(b) = {1}.

Since A is FSI, CNS~(a) = {1} or CNS~(b) = {1}, hence
a=10fb=1.
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PUF’s

Every PUF is equivalent to (the universal closure of) a
disjunction of conjunctions of equations.

s=tiff (s <tandt < s)iff (1 <s\tand1 < t\s).

Every conjunction of equations 1 < p; is equivalanent to the
equation 1 < p; A--- A p,.

So, every PUF is equivalent to a formula of the form

a=VT (1<ryor--orl <ryg)

Letag be (11)a1 V -+ V (re)a1 = 1.

Also, for m > 0 and X, fresh variables Y, we define «,,, as
the set of all equations of the form

Y1V oV =1
where ~; € 'Y (r;) foreachi € {1,...,k}. Seta =

new

Here Pq}q}(a) - {ﬂ-ylﬂ-y2 T My, (a/\l) ‘ yi €Y, Ty; € {)‘ym pyz}}

Qi -
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PUF and equations

Thm. Fora PUF canda FSIRL A, A = «iff A = a. Title

Outline
Pf. (=) If a are elements in A, then 1 < r;(a) for some . AL examples
SO, fY(r’L(a’)/\l) — 1, for a” f)/, hence’ Congruences
’Yl(""l((_l)/\l) \/ L. \/ ’Yk(rk(a)/\l) - 1 Subvariety lattice (atoms)
Subvariety lattice (joins)
(<:) We have 1 = Y1 (’]“1 (d)/\l) LYY Vi (,r.k (a)/\l), for a” Vi ?;r:;esentableRL’s
Since A is FSI, 1 is weakly join irreducible, so (@)1 = 1, for
some i; i.e., r;(a) < 1.
Axiomatization
o = VE (]. S Tl or .-+ 0Or ]. S ’rk:) E:I:ilt_eaxiomatization
ementarity
62 — {fyl \V/ -V Y = 1 | Yi e FY(TZ)} Applications
Logic

Representation - Frames

Applications of frames

Undecidability
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Axiomatization

Thm. Let K be a class of RLs axiomatixed by a set ¥ of PUF. e
Then V(K) is axiomatized, relative to RL, by W.

RL examples

Congruences

Pf. Let A € RLg;. By congruence distributivity and Jonsson’s -
Lemma, A € V(K) iff A € HSPy(K). Furthermore, as PUFs Sene e o

are preserved under H, S and Py, A € HSPy(K) iff A € K. i‘;ﬁf@fﬁﬁifﬁ?ﬁfi“)
Finally, A € K iff A = T iff A = . S
Let V1, V> be subvarieties of RL axiomatized by £, E»,
respectively, where E,, E5> have no variables in common. N
The class V; UV, is axiomatized by the set of PUFs camentarty
U={W(1<riol<r)|(1<r)ekE,(l<r)c k}.
Thm. Vl \/ V2 |S aX|Omatlzed by Representation - Frames

{\I} = {’)/1(7"1)\/’}/2(7"2) =1 | (1 < 7“1) c El, (1 < TQ) < EQ,’%; < F} Undecidability

References




RRL

Thm. The variety RRL generated by all totally ordered
residuated lattices is axiomatized by the 4-variable identity

A:((zVy)\z) Vpw((zVy)\y) =1.
Pf. A RL is a chain iff it satisfies Vx,y(x <y ory < x), or

Ve,y(1 < (zVy)\rorl < (zVy)\y).

Thus, RRL is axiomatized by the identities

1=y Vy\r)Vy((zVy\y);,re el I)

So, RRL satisfies the identity
A((x Vy)\z) V pu((z Vy)\y) = 1. (A, p)
Conversely, the variety axiomatized by this identity satisfies
zVy=1= X (x)Vy =1 zVy =1= xVpy,(y) =1. (imp)

By repeated applications of (imp) on (A, p), we get (I').
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Finite axiomatization

Let 3 = Va1 Voo (1 < z1orl < 25) and set By, = Bpy1 = Tie

Outline

RL examples

Va1 Vo [(VT Yz AND B, ) = (V7 Vz AND SBimi1)]

Congruences

Subvariety lattice (atoms)

Thm. Let V; and V, be two varieties of RLs that satisfy

Subvariety lattice (joins)

Bm :> Bm_|_1 Then Re.presentable RLs
1. V1 vV, is axiomatized by ¥,,, + a finite set of equations. T
2. If V1 and V), are finitely axiomatized then so is V; VvV V, o coumtons
Pf. By congruence distributivity (V1 V Vs)rsr C V1 U Vs, SO Rma'am |
(Vl \/ VZ)FSI SatISfleS Bm j Bm—|—]_ V]_ \/ V2 a|SO SatISfleS Elementarity

Applications

B,. = B,,11, because the latter is a special Horn sentence
(Lyndon) and is preserved under subdirect products.

By compactness of FOL, B,, = B,,+1 IS a consequence of a
finite set B of equations, valid in V; V Vs.

Note that V; Vv V), Is axiomatized by ¥ and, using
By, = Bpi1, ¥, Implies ¥, for all n > m.
Hence, V; V Vs is axiomatized by ¥,,, U B.

Logic

Representation - Frames

Applications of frames

Undecidability

References




Elementarity

Thm. For any variety V of RLs, Vrsr Is an elementary class me

iff it satisfies B,,, = B,,+1 for some m. P
Congruences

COI’. FOr every Variety V Of RLS, if VFSI iS elementary, then Subvariety lattice (atoms)

the finitely axiomatized subvarieties of V form a lattice.

Subvariety lattice (joins)
Representable RLs
Joins

Finite basis

FSI

PUF’s

PUF and equations
Axiomatization

RRL

Finite axiomatization

Elementarity

Applications

Logic

Representation - Frames

Applications of frames

Undecidability
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Applications

RRLs SatiSfy By = B;. Titl

xr \/ y = ]. :> fY]_ (ZIZ) \/ /)/2(y) = 1, for a” ’Y]_, 72 E F%‘. RL examples

Congruences

g'grOUpS SatISfy B]_ :> BQ. Subvariety lattice (atoms)
FOI’ a S ]., We have )\z()\w (CL)) p— )\wz (a) and pz(a) — )\Z_l (a) Subvariety lattice (joins)

Representable RLs
Joins

Finite basis

Subcommutative RSs satisfy By = B;. Fsi

PUF’s
PUF and equations

k-subcommutative RSs are defined by (z A 1)ky = y(x A 1)F. i

RRL
Finite axiomatization
Elementarity

Applications

Logic

Representation - Frames

Applications of frames

Undecidability

References




Logic
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A Hilbert-style axiomatization

{¢7 ¢ — w} |_HLe w gzﬁme
l_HLe (¢ — w) — [(w — X) — (qﬁ — X)] RL examples
e, [0 — (6 — )] = [ = (60— ) -

(l |_HLe ¢ — ¢ Subvariety lattice (atoms)

( AD { ¢7 ¢} |_HLe ¢ A w Sub'varietylattice(joins)
(Cla) Fur, (DAY) — o O —
(CLb)  FaL, (¢ AY) — 4 Sl o (oxampe]
(DRa)  Faar, v = (6 V ¥) i
(DRb |_HL w — (¢ \% w) Applications of frames

|_HLe ((¢5 — X) (w — X)) — (¢ V w) — X Undecidability
i, © - [0 — (4 9) —
FaL, [ — (0 — X)] = [(¢-¥) — X]

|_HLe 1

Far, 1 — (¢ — ¢)

)
)
)
)
)
)
)
CR) . [(6 = ¥) A (& — )] = [ — (¥ AX)
)
)
)
)
)
)
)



Substructural logics

The system HL has the following inference rules: e
¢ o\ (mp) K (adj) _® (pn) % (pn) o
Congruences
Y ¢ NY Y\QY Vo :
Subvariety lattice (atoms)
Subvariety lattice (joins)
We write ® g1, 1, if the formula ¢ is provable in HL from PR e
the set of formulas @.
. . . . Substructural logics (examples)
We do not allow substitution instances of formulas in . Substructral logics (examples

PLDT
Applications to logic

For example, p, p\q /uL .

Representation - Frames

Applications of frames

A set of formulas is called a substructural logic if it is closed
under Fg1, and substitution.

Undecidability

References

Substructural logics form a lattice SL.

In the following we identify (propositional) formulas over
{A,V,-,\,/, 1} with terms over the same signature.



Algebraic semantics

For a set of equations F U {s = t}, we write

E'ZRLS:t

iIf for every residuated lattice L. € RL and for every
homomorphism f : Fm — L,

f(u) = f(v), forall (u =v) € E, implies f(s) = f(t).

Theorem. The consequence relation -y, IS algebraizable,
with RL as an equivalent algebraic semantics:

1. if ® U {¢} is a set of formulas, then
® Fyr, ¢ Iff {1 < (b\(b < (I)} |:RL 1 <1, and

2. it EU{t = s} is a set of equations, then

E EgrL t = siff {u\v Av\u|(u =v) € E} Fur t\s A s\t.

3. s=tgkFEr 1 <t\sAs\t
4. ¢ AFpL I\N(1A @) A (6 A1)\
Theorem. SL and A(RL) are dually isomorphic.
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Substructural logics (examples)

Note that HL does not admit e
€ -w—2—-l—@—2) (oy=yz)
K) y—(z—y) (z < 1)
W) [z—(z—y)]—(x—y) (z < z?) -

Subvariety lattice (joins)

Examples of substructural logics include

m classical: (C)+(K)+(W)+ ——¢ = ¢ (DN) Subructral s

m intuitionistic (Brouwer, Heyting): (C)+(K)+(W)

® many-valued (tukasiewicz): (C)+(K)+ om0 i
(=) =P =0VY

m basic (Hajek): (C)+(K)+ ¢(¢p — o) = p A T

m MTL (Esteva, Godo): (C)+(K)+ (¢ — ¥) V (¢ — ¢) Undecidabily

m relevance (Anderson, Belnap): (C)+(W)+ Distrib. (+ DN) e

m (MA)linear logic (Girard): (C)



Substructural logics (examples)

Relevance logic deals with relevance. Tie

p — (¢ — q) is not a theorem.
The algebraic models do not satisfy integrality = < 1. N

p — (ﬁp — Q) [Or (p ’ _lp) — CI] iS nOt a theorem, Where Subvariety lattice (atoms)
—p = p — 0. The algebraic models do not satisfy 0 < z. Subvariety lttice (ins)

RL examples

Commutativity and distributivity are OK, so we get involutive Logo

A Hilbert system

CDRE (they Sat|Sfy XL = ZIZ‘) i;ii::ii?nﬁ:;;
Substructural logics (examples)

Intuitionistic logic deals with provability or constructibility. T ——

The algebraic models are Heyting algebras. Applications 0 logi
Representation - Frames

Many-valued logic allows different degrees of truth. Applcations o rames

((pAq) — 1] < [p— (¢ — )] is not a theorem. po—

The algebraic models do not satisfy z Ay =z - y. T

Linear logic is resourse sensitive. p — (p — p) [or (p - p) — p]
and p — (p - p) are not theorems.
The algebraic models do not satisfy contraction = < 2.



PLDT

The deduction theorem for CPL states:
X, tepr o Mt Xbopr ¢ — ¢

Theorem. Let X UV U {¢} C FFm, and L be a logic.

m |f L is commutative, integral and contractive, then

Y, Uk ¢ iff XL (A, ¥i) — o,
for some n € w,and y; € ¥, i < n.

m |[f L is commutative and integral, then

X, U b o iff Xy (H;f‘:1 Vi) — @,
forsome n € w,and ¢, € ¥, 1 < n.

m |[f L is commutative, then

N, Uk ¢ iff Sk (JLiz; (W A1) — o,
for some n € w,and ¢; € ¥, i < n.

m |f LL is any substructural logic, then
N, Wk ¢ iff Xk ([12; %:(3i)\ o,

for some n € w, iterated conjugates ~; and y; € ¥, i < n.
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Applications to logic

m Hilbert systems (Algebraization) e
m PLDT (Congruence generation for RLS) AL exampls
m Maximal consistent logics (Atoms in A(RL)) S
m Axiomatizing intersections of logics (Joins in A(RL)) SR e (o
. . . Subvariety lattice (joins)
m Translations (Glivenko, Kolmogorov) between logics, e.g., L.y'
. . ogic
Fopr ¢ iff Fr,: =@ (Structure of A(RL) and nuclei) A Hilbert syster
Substructural logics
Algebraic semantics
A I g e b ra PAEEN Log i C Sugbstructural logics (examples)
Substructural logics (examples)
congruence generation <« PLDT LN
CongruenCe eXtenSIOn < |OCa|DT Representation - Frames
EDPC <+« deduction theorem Applicatons of rames
subreduct axiomatization <+« strong seperation (Hilbert) Hndesk a0ty
decid. equational th. « decid. provability (Gentzen) | ==
finite generation <« cut elimination (+ fin. proof)
amalgamation <« interpolation




Representation - Frames
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Lattice frames

A lattice frame is a structure W = (W, W' N) where W and
W' are sets and N is a binary relation from W to W’.

If L is a lattice, Wy, = (L, L, <) is a lattice frame.

For X CWandY C W’ we define
XP={beW :x Nb foralzxe X}
Y9={aeW:a Ny, foralyeY}

The maps *: P(W) — P(W')and <: P(W') — P(W) form a
Galois connection. The map vy : P(W) — P(W), where
v (X) = X9, is a closure operator.

Lemma. If L = (L, A, V) is a lattice and v is a cl.op. on L,
then (v[L], A, V4) is a lattice. [x V., y = y(z V y).]

Corollary. If W is a lattice frame then the Galois algebra
W+ = (yw[P(W)],N,U,, ) is a complete lattice.

If L is a lattice, W is the Dedekind-MacNeille completion of
L and z — {z}< is an embedding.
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Residuated frames

A residuated frame is a structure W = (W, W', N, o, 1) where
Wand W' aresets N C W x W', (W,0,1) is a monoid and
forall z,y € W and w € W’ there exist subsets

x \ w,w //y € W' such that

(xoy)y Nw < y N (z\w) & = N (w/ y)
If LisaRL, Wy, = (L, L,<,-,{1}) is a residuated frame.
A nucleus ~ on a residuated lattice L is a closure operator on

L such that v(z)v(y) < v(zy) (or v(v(z)v(y)) = v(zy)).

Theorem. Givena RLL = (L, A, V,-,\,/,1) and a nucleus
on L, the algebra L, = (L., A, V4, ~,\,/,7(1)), is a
residuated lattice, where x -, y = y(z - y), x V, y = y(z V y).

Theorem. If W is a frame, then ~ is a nucleus on
P(W,o,{1}).

Corollary. If W is a residuated frame then the Galois
algebra W+ = P(W,0,1),, is a residuated lattice. Moreover,
for W, z — {z}< is an embedding.
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Lattice frames
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Basic substructural logics
Examples of frames (FL)
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Gentzen frames

Proof

Applications of frames
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Formula hierarchy

L POIarity {\/, o 1}, {/\7 \7 /} Title

Outline

m The sets P,,, NV,, of formulas are defined by: s eempes
K K (0) Py = Ny = the set of variables Gongruonses
(P‘]) Nn g Pn 11 Subvariety lattice (atoms)
: : (P2) a, 3 € Ppi1 = aVp,a-8,1€ Py Subvariety latice (joins)
Ps NB (N1) Pn g Nn—l—l Logic

(N2) a,BE N1 = aNB E N1 Represeiaion - Frames
T >< T (N3) a € Pri1,8 € Npy1 = a\B,B/a € Npya 1‘;':;;22‘?;%

P> Noo B Py = Nadval s Mokt = (Pr)APosa\/Poss o

Basic substructural logics

Examples of frames (FL)
T >< T B P’I’L g Pn+1’_/\/’n g Nn_|_17 Upn — UNn = Fm Examples of frames (FEP)

P, N m P;-reduced: \/[[p; S s
x >< T [ | Nl'redUCed /\(ppo o o e pn\’]"/qlq2 o o e qm) Applications of frames
730 NO p]_p2 st pnq1QQ 0 oo qm S T References

m Sequent: ay,as,...,a, = ag
(r = a,a € Fm,x € Fm”)



FL

r=a Yoaoz=C Tite
yOQZ‘OZ=>C (CUt) aia} (Id) Outline
RL examples
yOG,OZ:>C (/\Lg) yObOZ:>C (/\L?“) CE:>CL 513:>b (/\R) Congruences
yoa’ /\ bOZ:>C yoa /\ bOZ:>C $:>Cl /\ b Subvariety lattice (atoms)
oao0z=>C O bO Z2=>C Subvariety lattice (joins)
: : (VL) 228 (vRe) —EZ0 (VRr)
yoa V boz=-c r=a Vb r=a\V b
Representation - Frames
Tr=-a yObOZ:>C a o x:>b Latti.ceframes
(L) (\R) e
yox o (a\b)oz=c r=-a\b i y
r=a yoboz=-c L) T oa=b (/R) crampten of fames (1)
yo(b/a) o [L’OZ:}C (L’:}b/a] Z):‘;amplesofframes(FEP)
Gentzen frames
yoa o boz=>c (L) r=a Y=b (R) Proof
yoa . bOZ:>C T 0 y:>a . b Applications of frames
Undecidability
Y oz=a
yoloz=-a (L) e=1 (IR) -

where a,b,c € Fm, z,y,z € Fm™.



FL

aise O G5 (10)
u[a[i]:]ic (AL#) u[Z[i];;C (AL Z22 22D (g
et = Ry 2= Ry
oo, (0 I OR
T 1D 525 R
Z[[fo]]:f (b Zf;,?f (‘R)
m;aa L) =7 (R
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Basic substructural logics

If the sequent s is provable in FL from the set of sequents S, me
we write S Fgg, s.

RL examples
U[SU ©) y] :> C Congruences
(e) Subvariety lattice (atoms)
ulyox] = c (exchange) zy <uyx

Subvariety lattice (joins)

Logic

ulxozx] = c
ulx] = ¢

(¢)

. 9 Representation - Frames
(contraction) =z <=z Lattice frames
— Residuated frames
Formula hierarchy
FL

|’U,| = C Basic substructural logics

(Z ) Examples of frames (FL)
U [:C] = C (integrality) €T S 1 Examples of frames (FEP)

GN
Gentzen frames

We Write FLeC for FL —|— (e) —|— (C)_ Proof

Applications of frames

Theorem. The systems HL and FL are equivalent via the Undecidabiy

maps s(y) = ( = ¢) and R
dlar,as,...,an = a) =ap\(...(a2\(a1\a))...);




Examples of frames (FL)

Consider the Gentzen system FL (full Lambek calculus). nie
We define the frame Wgr,, where Ellaxaiglee
. Congruences
m (W, 0,¢) to be the free monoid over the set F'm of all :
fo r m u I aS Subvariety lattice (atoms)

Subvariety lattice (joins)

m V' = Sy x Fm, where Sy is the set of all unary linear
pO/ynomIals u[w] - yOZCOZ Of W’ and Representation - Frames

H N (/U;, a/) iff |—FL u[z] = Q. Lattice frames

Residuated frames

Logic

Formula hierarchy

For FL

Basic substructural logics

(u,a) [ &= {(ul_oz],a)} and z \\ (u,a) = {(ulr o _],a)}, ST

Examples of frames (FEP)

we have GN

Gentzen frames
€L O yN(U, a/) Iff l_FL U[Qj ©) y] = Q Proof

Applications of frames

Iff FFL U[:COy] == Qa
iff tN(ul_oyl,a)
iff yN(ulzo_],a).

Undecidability

References




Examples of frames (FEP)

Let A be aresiduated lattice and B a partial subalgebra of A. e

Outline

We define the frame W g, where AL examples
m (W,-,1) to be the submonoid of A generated by B, senarenees

m /' = Sg x B, where Sy is the set of all unary linear
polynomials u|x] = yoxoz of (W, -, 1), and

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

u X N (u, b) by u [x] SA b Representation - Frames
Lattice frames
FO r Residuated frames

Formula hierarchy

(u,a) )&= {(ul_-z],a); and 2\ (u,a) = {(ulz - _],a)},

we have e
€Z - yN(u? a’) Iff U[:U y] S a g:ntzen frames
| f f T N ( [ ] ) Proof
Applications of frames
ift yN (ulz - _|, a).

Undecidability

References




GN

xNa alNz (CUT)

xNz

xNa bNz

L
zo (a\b)Nz (b
xNa bNz

L
(b/a) oxNz /b

aobNz
a-bNz

alN z bN z
a/\bNz (ALE) a/N\bNz

(-L)

alNa
aoxNb
rNa\b

xoalNb
rNb/a

xNa yNb

(ALr)

aNz bNz xNa
(Vb xNaV b

aV bNz

eNz
1Nz

(1L)

xoyNa-b
xNa xNb

(ld)

(\R)
(/R)

(-R)

(VRY)

N1 (1R)

xNa N\ b
xNb

xNaV b

(VRr)
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FL

Basic substructural logics
Examples of frames (FL)
Examples of frames (FEP)

Gentzen frames

Proof

Applications of frames
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Gentzen frames

The following properties hold for W, Wgr, and W B Title

Outline

1. W is a residuated frame AL examples
2. B is a (partial) algebra of the same type, (B = L, Fm, B)
3. B generates (W, o,¢) (as a monoid)

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

4. W' contains a copy of B (b < (id, b)) Logic
5. N satisfies GN, foralla,be B, z,y €¢ W,z € W". P
Residuated frames
Formula hierarchy
We call such pairs (W, B) Gentzen frames. e oot g
A cut-free Gentzen frame is not assumed to satisfy the S
(CUT)-rule.
Proof
Theorem. Given a Gentzen frame (W, B), the map et ol Vo
{1<:B — W+, b {b}is a (partial) homomorphism. Undeccaity
(Namely, if a,b € Band a e b € B (e is a connective) then s

{a e b}~ = {a}~ ew+ {b}7).



Proof

Key Lemma. Let (W, B) be a Gentzen frame. For all e
a,b € B, k,1 € WT and for every connective o, if c @ b € B,
ae X C{a}dandbeY C {b}7, then

l.aegbe X oyw+ Y C {aeg b} (I € 1w+ C {1}")

RL examples

Congruences

Subvariety lattice (atoms)

2. In part|CUIar, a .B b E {CL}<] .W+ {b}<] g {a/ .B b}<]. Subvariety lattice (joins)
3. Furthermore, because of (CUT), we have equality. Logic

Representation - Frames
Proof Lete = V. If 2 € X, then z € {a}~; so 2 Na and e e
xNa Vb, by (VR); hence x € {aVvb}<and X C {aV b}7. A
Likewise Y C {aVb}¥,s0 XUY C {aVb}<and sk
X \/ Y = fy(X U Y) g {a, \/ b}<l Examples of frames (FEP)

GN
Gentzen frames

On the other hand, let X vY C {z}<, for some z € W. Then,
a E X g X \/ Y g {Z}<], SO CLNZ. Slmllarly, bNZ, SO a \/ bNZ Applications of frames
by (VL), hence a Vb e {z}<. Thus,avbe X VY. Undecidabllty

References

We used that every closed set is an intersection of basic
closed sets {z}<, for z € W.



Applications of frames
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Applications
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DM-completion

For a residuated lattice L, we associated the Gentzen frame me
(W, L).

The underlying poset of W1 is the Dedekind-MacNeille e

RL examples

completion of the underlying poset reduct of L. Subvariety lattice (atom)
Subvariety lattice (joins)
Theorem. The map = — z< is an embedding of L into Wi .

Representation - Frames

Applications of frames
Completeness - Cut elimination
FMP

FEP

Finiteness

Equations 1

Equations 2

Structural rules
Amalgamation-Interpolation
Applications

Undecidability

References




Completeness - Cut elimination

For every homomorphism f : Fm — B, let f : Fm; — W e

be the homomorphism that extends f(p) = {f(p)}< (p: S
Varlabl €. ) Congruences
Corouary- If (-‘Rf7 B) IS a Cf Gentzen frame, fOr_every Subvariety lattice (atoms)
homomorphism f : Fm — B, we have f(a) € f(a) €| f(a). Subvarityatics Goin)
If we have (CUT), then f(a) =] f(a). Logi

We define WgL, E x = cby f(z) N f(c), for all f. e
Theorem. If WFL =z < c,then WgL, Fz = c.
Idea: For f : Fm — B, f(z) € f(z) C f(c) C {f(c)}7, so e

f@) N f(e); e
Corollary. FL is complete with respect to W, . mevans
Corollary. The algebra W, generates RL. Appicains

Undecidability

The frame Wgy,s corresponds to cut-free FL.
Corollary (CE). FL and FL' prove the same sequents.
Corollary. FL and the equational theory of RL are decidable.

References




Finite model property

For WeL, given (z,2) € W x W' (if z = (u,c), then u(z) = c T
is a sequent), we define (z, 2)! as the smallest subset of

W x W' that contains (x, z) and is closed upwards with
respect to the rules of FLf. Note that (z, 2)! is finite.

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

The new frame W' associated with N’ = N U ((y,v)")¢ is
residuated and Gentzen.
Clearly, (N')¢ is finite, so it has a finite domain Dom((N")¢)

Logic

Representation - Frames

Applications of frames

and codomain Cod((N")¢). DM-compston

Forevery z & Cod((N')¢), {z}¥=W. So, {{z}Y:2z€ W}is i —

finite and a basis for vx. So, W't is finite. i~

Moreover, if u(z) = cis not provable in FL, then itis not valid e,

in W't S —
Applications

Corollary. The system FL has the finite model property. Undecidabilly

References

Corollary. The variety of residuated lattices is generated by
its finite members.



FEP

A class of algebras K has the finite embeddability property e
(FEP) if for every A € IC, every finite partial subalgebra B of
A can be (partially) embedded in a finite D € K.

RL examples

Congruences

Theorem. Every variety of integral RLs axiomatized by Subvarietylattice (atom)
equartions over {V, -, 1} has the FEP. Suveriety latice Goin)
m BembedsinW, pvia{ }9:B— W+ -
2 Representation - Frames
" W g is finite
+ Completeness - Cut elimination
FMP
" Wap €V
Finiteness
Corollary. These varieties are generated as quasivarieties ot |
by their finite members. Structural rues

Amalgamation-Interpolation
Applications

Corollary. The corresponding logics have the strong finite
model property:

if ® t/ 1), for finite ®, then there is a finite counter-model,
namely there is D € V and a homomorphism f : Fm — D,
such that f(¢) =1, for all ¢ € ®, but f(v) # 1.

Undecidability

References




Finiteness

Idea: As every element in W3 g is an intersection of basic .
elements. So it suffices to prove that there are only finitely AL examples
many such elements. Congruences
Idea: Replace the frame W, g by one WK{B, where it is S“bv"’"fe‘y"”‘“f“‘f“_"ms)
easier tO Work_ Subvariety lattice (joins)
Logic
Let M be the free monoid with unit over the set B and Representation - Frames
f: M — W the extension of the identity map. T A—

DM-completion
Completeness - Cut elimination
f N p FMP
M-LW-—Ww
Finiteness
Equations 1
Equations 2
Structural rules
Amalgamation-Interpolation
Applications

Undecidability

References




Equations 1

Idea: Express equations over {V, -, 1} at the frame level. e
For an equation ¢ over {V, -, 1} we distribute products over AL examples

joinstogets; V:---Vs, =t V---Vi,. s;,t;: monoid terms. Congruences

Subvariety lattice (atoms)

s1V- Vs, <ti1V---Vt,andt; V---Vi, <s1 V-V sy,.

Subvariety lattice (joins)

The first is equivalent to: &(s; <t; V- Vi,). Logio

Representation - Frames

. 2
We proceed by example: z<y < zy V yx R
2 DM-completion
(5131 \/ 332) y S (5131 \/ x2)y \/ y(x]_ \/ fL'Q) Completeness - Cut elimination

FMP

x%y Vx122y V Tox1Yy V x%y <21y VayVyxrsV yrs Finiteness

Equations 1

Equations 2

xley S .CU]_y \/ ny \/ yx]_ \/ yan Structural rules
Amalgamation-Interpolation
Applications

T1Y SV Ty SV Y1 SV Yra S U
T1T2Y < U

Undecidability

References

x10yYyN z x900yN 2z yoxi Nz yoxo N z

R(e)

xi10x00y N z



Equations 2

Theorem. If (W, B) is a Gentzen frame and ¢ an equation e
over {V, -, 1}, then (W, B) satisfies R(¢) iff W satisfies ¢.

RL examples

(The linearity of the denominator of R(¢) plays an important Congruences
rOIe in the prOOf) Subvariety lattice (atoms)

Subvariety lattice (joins)

Corollary If an equation over {V,-,1} is valid in A, then itis Logic
also valid in WX’B, for every partial subalgebra B of A. Representation - Frames

Applications of frames

DM-completion
‘|‘ Completeness - Cut elimination
Consequently, W, g € V. o
FEP
Finiteness
Equations 1

Equations 2

Structural rules
Amalgamation-Interpolation
Applications

Undecidability

References




Structural rules

Given an equation ¢ of the form tq < ¢, Vv ---V t,, where t; e
are {-, 1}-terms we construct the rule R(¢)
RL examples
u tl = o . e Uu t = Q Congruences
[ ] [ n] (R(g)) Subvariety lattice (atoms)
ulto] = a
Subvariety lattice (joins)
where the ¢;’s are evaluated in (W, 0,¢). Such arule is called o
/Ineaf |f a” Va”ables |n t() are dIStInCt Representation - Frames
. . . Applications of frames
Theorem. Every system obtained from FL by adding linear Oncomion
. . . ompleteness - Cut elimination
rules has the cut elimination property. P
FEP
) . . Finiteness
A set of rules of the form R(¢) is called reducing if there is a Sy
. . O O quations
complexity measure that decreases with upward applications
Amalgamation-Interpolation
of the rules (and the rules of FL). o

Undecidability

Theorem. Every system obtained from FL by adding linear
reducing rules is decidable. The subvariety of residuated
lattices axiomatized by the corresponding equations has
decidable equational theory.

References




Amalgamation-Interpolation

Given algebras A,B,C, maps f: A - Bandg: A —Cand T
Gentzen frames Wg, W, we define the frame W on BuU C,
where N is specified by I'g,I'c IV g iff there exists a € A
such that I'c N¢ g(@) and I'g, f(oz) Np ﬁ

RL examples

Congruences

Subvariety lattice (atoms)

Theorem. W is a Gentzen frame. Hence <: BUC — W SUbvariety ltice (joins)
IS a quasihomomorhism. Logic

Let D = W and h, k the restrictions of < to B and C. B

Applications of frames
DM-completion

Corollary. The maps h: B —-D and k£ : C — D are T
homomorphisms. Moreover, injections and surjections er
transfer: If f is injective (surjective), so is h. .

Equations 2
Corollary. Commutative RL has the amalgamation property
(f, g injective) and the congruence extension property (f Appiications
injective, g surjective). Undecidabilty

References

Corollary. FL. has the Craig interpolation propety and
enjoys the Local Deduction Theorem.



Applications

m Cut-elimination (CE) and finite model property (FMP) for e
FL, (cyclic) InFL. Generation by finite members for RL, N
I Il F L Congruences

| The finite embeddability property (FEP) for integral RI_ With Subvariety lattice (atoms)
{\/, ‘y 1}'aX|OmS- Subvariety lattice (joins)

B The strong separation property for HL Logi

m The above extend to the non-associative case, as well as o
with the addition of suitable structural rules ot cometon

® Amalgamation for commutative RL and interpolation for e
commutative FL s,

m (Craig) Interpolation, Robinson Property, disjunction et s
property and Maximova variable separation property for T
FL,

Undecidability

m Super-amalgamation, Transferable injections, Congruence References
extension property for commutative RL



Undecidability
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Applications of frames

Undecidability
(Un)decidability
Word problem (1)
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Word problem (4)
Word problem (5)
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(Un)decidability

Theorem. The quasiequational theory of RL is undecidable.
(Because we can embed semigroups/monoids.) The same
holds for commutative RL.

Theorem. The equational theory of modular RL is
undecidable. (By transfering the corresponding result for
modular lattices).

Theorem. The equational theory of commutative, distributive
RL is decidable.
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Outline

RL examples
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Logic

Representation - Frames

Applications of frames

Undecidability
(Un)decidability
Word problem (1)
Word problem (2)
Word problem (3)
Word problem (4)
Word problem (5)
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Word problem (1)

A finitely presented algebra A = (X|R) (in a class K) has a e
solvable word problem (WP) if there is an algorithm that,

given any pair of words over X, decides if they are equal or
not.

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

A class of algebras has solvable WP if all finitely presented
algebras in it do.

Logic

Representation - Frames

For example, the varieties of semigroups, groups, ¢-groups, Applications of rames
modular lattices have unsolvable WP. eacai
Main result: The variety CDRL of commutative, distributive s ot (o
residuated lattices has unsolvable WP. pors e (9

References




Word problem (2)

Main idea: Embed semigroups, whose WP is unsolvable. e
Residuated lattices have a semigroup operation -, but e
Congruences

commutative semigroups have a decidable WP.

Subvariety lattice (atoms)

Alternative approach: Come up with another term definable Subvariety lattice (ins)
operation ® in residuated lattices that is associative. Logic

Representation - Frames
Intuition: Coordinization in projective geometry and modular Applcations of rames
| att | Ce S . Undecidability

(Un)decidability
Word problem (
(

(cki Vd) A (ag V aj)

Word problem

Word problem (

Word problem (
(

1
2
3
4

Word problem (5

)
)
)
)
)

References
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Word problem (3)

We define an n-frame in a residuated lattice consisting of e
elements a;,--- ,a, and ¢;;, for 1 <¢ < j < n and satisfying

certain conditions (the a;’s are linearly independent, ¢;; is on
the line generated by a; and a; etc.).

We use the operations v and -.

RL examples

Congruences

Subvariety lattice (atoms)

Subvariety lattice (joins)

Logic

We deflne the ‘Ilne, LZ] and the Operathn @zj Representation - Frames

Applications of frames

Undecidability

Theorem Given an 4-frame in a residuated lattice the ocecaly

Word problem

(
algebra (L’l,j) @1,]) iS a. Semigroup. Wordproblem

Word problem

1
2
3
Word problem (4
5

)
)
)
)
Word problem (5)

(
(

References




Word problem (4)

Given a finitely presented semigroup S and a variety V of
residuated lattices, we construct a finitely presented
residuated lattice A(S,V) in V.

Given a vector space W, its powerset forms a distributive
residuated lattice Aw .

Theorem If
1. Vis a variery of distributive residuated lattices containing
A for some infinite-dimentional vector space W and

2. S is a finitely presented semigroup with unsolvable WP,
then the residuated lattice A(S, V) in V has unsolvable WP.

In the proof we show that for every pair of semigroup words
r,S,

S satisfies ' (z) = s'(Z) iff A(S,V) satisfies r®(z') = s© (7).

Corollary The WP of CDRL is unsolvable.
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Word problem (
Word problem (
Word problem (

(

1)
2)
3)
Word problem (4)
5)

Word problem (
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Word problem (5)

A quasi-equation is a formula of the form Tie

Outline

(Slztl&SQItQ&&Sn:tn):>SZt RL examples

Congruences

The solvability/decidability of the WP states that given any Subvariety fatice (atoms)
set of equations s; = t1, 59 = to,...s, = t, there is an
algorithm that decides all quasi-equations of the above form.

Subvariety lattice (joins)

Logic

Representation - Frames

The solvability of the quasi-equational theory states that
there is an algorithm that decides all quasi-equations of the

Applications of frames

Undecidability

above form. (Un)deciaablliy

Word problem (1)

Word problem (2)
Corollary The quasi-equational theory of CDRL is oaprenen @
undecidable.

References

Corollary The equational theory of CDRL is decidable.
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People

Some people involved: nie
P. Bahls P. Jipsen e
F Bernadinelli  T. Kowalski N
W' BlOk H Ono Subvariety lattice (joins)
K. Blount L. Rafter el
A. Ciabattoni J. Raftery Representation - Frames
J. Cole K. Terui Applications of fames
R.P. Dilworth C. Tsinakis :”:’““’ab"”y
N. Galatos C. van Alten _
J. Hart M. Ward bllograpghy

N. Galatos, P. Jipsen, T. Kowalski and H. Ono. Residuated
Lattices: an algebraic glimpse at substructural logics, Studies
in Logics and the Foundations of Mathematics, Elsevier,
2007.
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