Universal Algebra and Computational Complexity Lecture 2

Ross Willard

University of Waterloo, Canada

Třešt', September 2008

Recall from yesterday:

Topics for today:

- "Nondeterministic" complexity classes
- Reductions
- Complete problems

Identify 3COL with $\{G : G \text{ is } 3\text{-colorable}\}$. Similarly with other decision problems.

Informally, 3COL is a projection of a problem in P.

Define

$$3COL\text{-}TEST = \{(G, \chi) : \chi \text{ is a 3-coloring of } G\}.$$

Clearly 3COL-TEST is tractable (in $TIME(N^2)$, hence in P).

And

$$G \in 3COL \Leftrightarrow \exists \chi[(G, \chi) \in 3COL\text{-}TEST].$$

If $(G, \chi) \in 3COL\text{-}TEST$, then we call χ a certificate for " $G \in 3COL$."

We say that:

- 3COL-TEST a polynomial-time certifier for 3COL.
- 3*COL* is polynomial-time certifiable.
- 3COL is in Nondeterministic Polynomial Time (or NP).

More generally,

A decision problem D is Polynomial-time certifiable if there exists a decision problem $E \in P$ such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E].$
- Technicality: there exists a polynomial bound to the length of *w* as a function of the length of *x*.

NP is the class of polynomial-time certifiable problems.

The following problems are all in NP (and not known to be in P).

4COL, 5COL, etc.

2 SAT:

- INPUT: a boolean formula φ .
- QUESTION: is φ satisfiable?
- $\bullet\,$ Certificate: an assignment of values to the variables making φ true.
- Polynomial-time certifier: given (φ, \mathbf{c}) , decide if $\varphi(\mathbf{c}) = 1$ (i.e., *FVAL*).
- ISO:
 - INPUT: two finite graphs G_1, G_2 .
 - QUESTION: are G_1 and G_2 isomorphic?
 - Certificate: an isomorphism from G_1 to G_2 .
 - Polynomial-time certifier: given (G_1, G_2, f) , decide if $f : G_1 \cong G_2$.

• HAMPATH:

- INPUT: a finite directed graph G.
- QUESTION: does G have a Hamiltonion path?

In a similar way, we can "stick an N" in front of any complexity class. To define it precisely, we need the notion of a certifying Turing machine:

- One additional input tape; holds the potential certificate.
 - Read-only
 - Grad student reader can only move RIGHT.

Roughly,

If \Box is a complexity class, then a decision problem D is in $N\Box$ iff there exists a decision problem E in two inputs (x, z), and there exists a certifying Turing machine M, such that

- $x \in D \Leftrightarrow \exists w[(x, w) \in E].$
- M decides E.
- Moreover, ∀(x, z), M decides whether (x, z) ∈ E with resource usage as defined by □, measured as a function of N = the length of x.
- NL = "Nondeterministic LOGSPACE"
- *NSPACE* = "Nondeterministic *PSPACE*"
- NEXPTIME = "Nondeterministic EXPTIME"

PATH is in NL.

 $\mathrm{PROOF.}$ We show that *PATH* is a projection of a problem that can be decided by a *LOGSPACE* certifying Turing machine.

Define

$$\begin{array}{ll} \textit{PATH-TEST} &= \{(G,\pi) : G \text{ is a directed graph with } V = \{0,\ldots,n-1\},\\ &\pi = (v_0,v_1,\ldots,v_k) \text{ is a path from 0 to 1 in } G,\\ &\text{ and } k \leq n\} \end{array}$$

Clearly PATH is a projection of PATH-TEST.

We can build a certifying Turing machine which solves PATH-TEST ...

 \dots and using only LOGSPACE as a function of the length of G.

Summary of complexity classes

 10^6 USD prize (Clay Mathematics Institute) for answering $P \stackrel{?}{=} NP$.

Suppose C, D are decision problems.

Suppose $f : C_{inp} \rightarrow D_{inp}$ is a function.

We say that

f reduces C to D,

and write

 $C \leq_f D$,

if for all $x \in C_{inp}$,

 $x \in C \Leftrightarrow f(x) \in D.$

Picture of $C \leq_f D$

Intuition: if $C \leq_f D$, then

- Algorithms for *D* and *f* can be used to solve *C*.
- Hence D is at least as hard as C (modulo the cost of computing f).

Recall the problems 3COL and SAT:

3*COL*

INPUT: a finite graph G = (V, E). QUESTION: is G 3-colorable?

SAT

INPUT: a boolean formula φ . QUESTION: is φ satisfiable?

Let's find a function f which reduces 3COL to SAT.

Ross Willard (Waterloo)

A reduction of 3COL to SAT

Given a finite graph G = (V, E), we want a boolean formula φ_G such that G is 3-colorable $\Leftrightarrow \varphi_G$ is satisfiable.

- The variables of φ_G are x_v^c ($v \in V$, $c \in \{r, g, b\}$).
 - Think of x_v^c as representing the assertion "v is colored c."
- For each $v \in V$ let α_v be the formula "v has exactly one color," i.e.,

$$(x_{v}^{\mathsf{r}} \lor x_{v}^{\mathbf{g}} \lor x_{v}^{\mathbf{b}}) \land \neg (x_{v}^{\mathsf{r}} \land x_{v}^{\mathbf{g}}) \land \neg (x_{v}^{\mathsf{r}} \land x_{v}^{\mathbf{b}}) \land \neg (x_{v}^{\mathbf{b}} \land x_{v}^{\mathbf{b}}).$$

• For $v, w \in V$ let $\beta_{v,w}$ be the formula "v and w have different colors," i.e.,

$$\neg (x_{v}^{\mathsf{r}} \wedge x_{w}^{\mathsf{r}}) \wedge \neg (x_{v}^{\mathsf{g}} \wedge x_{w}^{\mathsf{g}}) \wedge \neg (x_{v}^{\mathsf{b}} \wedge x_{w}^{\mathsf{b}}).$$

Let

$$\varphi_{\mathcal{G}} = \left(\bigwedge_{\mathbf{v}\in \mathbf{V}} \alpha_{\mathbf{v}}\right) \wedge \left(\bigwedge_{(\mathbf{v},\mathbf{w})\in \mathbf{E}} \beta_{\mathbf{v},\mathbf{w}}\right).$$

This clearly works.

Picture of $3COL \leq_f SAT$

Define $f : G \mapsto \varphi_G$. Then $3COL \leq_f SAT$.

SAT is at least as hard as 3COL, modulo the cost of computing φ_G .

What is the cost of computing φ_{G} ?

Computing f with a functional Turing machine

Idea: replace the output bit with an output write-only tape.

Picture of a functional Turing machine

In general:

- a functional Turing machine is a Turing machine whose output *bit* is replaced by an output *tape* (write-only).
 - Output tape grad student can only move RIGHT.

Let C, D be decision problems with appropriately encoded input sets C_{inp}, D_{inp} respectively.

A function $f : C_{inp} \to D_{inp}$ is computed by a functional Turing Machine M if whenever M is started with input $x \in C_{inp}$, it eventually halts with f(x) written on its output tape.

Let X be a complexity class (such as P, L, etc.).

We say that a function $f : C_{inp} \rightarrow D_{inp}$ is computable in X if there exists a Turing Machine which computes f and on input x requires no more resources than those permitted by the definition of X.

Example: the function $f : G \mapsto \varphi_G$ in our example showing $3COL \leq_f SAT$ is *P*-computable.

• (In fact, it is *L*-computable.)

Lemma. For any decent complexity class X, if $C \leq_f D \in X$ and f is X-computable, then $C \in X$.

Suppose X, Y are complexity classes with $X \subseteq Y$. Let C, D be decision problems with $C, D \in Y$.

We say that C reduces to D (mod X) and write

 $C \leq_X D$

if there exists an X-computable function $f : C_{inp} \rightarrow D_{inp}$ which reduces C to D.

2 We write $C \equiv_X D$ if both $C \leq_X D$ and $D \leq_X C$.

This turns the \equiv_X -classes of Y into a poset.

Most widely used when X = P.

The poset (NP/ \equiv_P , \leq_P) has ...

- a least element (consisting of all the elements of P), and
- ② (S. Cook, '71; L. Levin, '73) a greatest element, namely, the ≡_P-class containing SAT.

Jargon: SAT is NP-complete (for \leq_P reductions).

Ross Willard (Waterloo)

A decision problem *D* is *NP*-complete if:

- $D \in NP$, and
- $C \leq_P D$ for all $C \in NP$.

Equivalently (by Cook-Levin), D is NP-complete iff $D \equiv_P SAT$.

Many problems in NP are known to be NP-complete.

Examples:

- 3*COL*, 4*COL*, etc.
- HAMPATH
- 3*SAT* (the restriction of *SAT* to formulas in CNF, each conjunct being a disjunction of at most 3 literals)

(Exercise: check that our proof we gave for $3COL \leq_P SAT$ is actually a proof of $3COL \leq_P 3SAT$.)

The picture of *EXPTIME* (mod *P*)

- (H. Friedman '82, unpubl.; C. Bergman, D. Juedes & G. Slutzki, '99)
 CLO is EXPTIME-complete (for ≤_P reductions).
- (D. Kozen, '77) 1-*CLO* is *PSPACE*-complete (for \leq_P reductions).

The picture of $NP \pmod{L}$

- SAT, 3SAT and 3COL are NP-complete (for \leq_L reductions).
- (R. Ladner, '75) *CVAL* is *P*-complete (for \leq_L reductions).
- (W. Savitch, '70) *PATH* is *NL*-complete (for \leq_L reductions).

L	\subseteq	NL	\subseteq	Ρ	\subseteq	NP	\subseteq	PSPACE	\subseteq EXPTIME	
Ψ		Ψ		Ψ		Ψ		Ψ	Ψ	
FVAL,		PATH,		CVAL		SAT,		1- <i>CLO</i>	CLO	
2 <i>COL</i>		2 <i>SAT</i>				3 <i>SAT</i> ,				
						3 <i>COL</i> ,				
						4 <i>COL</i> ,	etc.			
						HAMPA	ΑTΗ			

Moreover, each problem listed above is "hardest in it's class," i.e., is complete with respect to either \leq_P or \leq_L reductions.