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Summary of Lecture 1

Recall from yesterday:

L C P C PSPACE C EXPTIME
w

PATH
FVAL

w w
3COL CLO

Topics for today:
@ “Nondeterministic” complexity classes
@ Reductions

o Complete problems
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Certificates for 3COL

Identify 3COL with {G : G is 3-colorable}. Similarly with other decision
problems.

Informally, 3COL is a projection of a problem in P.

Define
3COL-TEST = {(G,x) : x is a 3-coloring of G}.

Clearly 3COL-TEST is tractable (in TIME(N?), hence in P).

And
G €3COL & 3Fx[(G,x) € 3COL-TEST].
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Certificates for 3COL

If (G, x) € 3COL-TEST, then we call x a certificate for “G € 3COL.”

We say that:
@ 3COL-TEST a polynomial-time certifier for 3COL.
@ 3COL is polynomial-time certifiable.
@ 3COL is in Nondeterministic Polynomial Time (or NP).
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More generally,

A decision problem D is Polynomial-time certifiable if there exists a
decision problem E € P such that

e x € D < Iw[(x,w) € EJ.

@ Technicality: there exists a polynomial bound to the length of w as a
function of the length of x.

NP is the class of polynomial-time certifiable problems.
<

L C P C NP C PSPACE C EXPTIME
w
3COL
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More examples of NP problems

The following problems are all in NP (and not known to be in P).
© 4COL, 5COL, etc.

Q@ SAT:
e INPUT: a boolean formula ¢.
o QUESTION: is ¢ satisfiable?
o Certificate: an assignment of values to the variables making ¢ true.
o Polynomial-time certifier: given (¢, c), decide if ¢(c) =1 (i.e., FVAL).

Q@ ISO:

e INPUT: two finite graphs Gi, G;.

o QUESTION: are G; and G, isomorphic?

o Certificate: an isomorphism from G; to G».

o Polynomial-time certifier: given (Gy, Gy, f), decide if f : G & G,.
Q@ HAMPATH:

e INPUT: a finite directed graph G.

o QUESTION: does G have a Hamiltonion path?
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Certifying Turing machines

In a similar way, we can “stick an N in front of any complexity class.
To define it precisely, we need the notion of a certifying Turing machine:
@ One additional input tape; holds the potential certificate.

o Read-only
o Grad student reader can only move RIGHT.

|nput(RO|\/|): ilHHHlHllllllllllllllllgéllllll
input x
Certif.(ROM) iHHHHHHHHHHHHllgéllllll--~
potential certificate z
R/WTapel: iHHHHHHHHHHHHllgéllllll-'-
R/WTape2: iHHHHHHHHHHHHllgéllllll-'-
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Nondeterministic complexity classes

Roughly,

If (I is a complexity class, then a decision problem D is in NI iff there
exists a decision problem E in two inputs (x,z), and there exists a
certifying Turing machine M, such that

x € D & 3w|(x,w) € E].
@ M decides E.

Moreover, ¥(x,z), M decides whether (x, z) € E with resource usage
as defined by [J, measured as a function of N = the length of x.

NL ="Nondeterministic LOGSPACE"
NSPACE = “Nondeterministic PSPACE"
NEXPTIME = “Nondeterministic EXPTIME"
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LPATH is in NL. )

PROOF. We show that PATH is a projection of a problem that can be
decided by a LOGSPACE certifying Turing machine.

Define

PATH-TEST = {(G,w) : G is a directed graph with V ={0,...,n—1},
m = (vo,Vv1,...,Vvk) is a path from 0 to 1 in G,
and k < n}

Clearly PATH is a projection of PATH-TEST.
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Certifying PATH-TEST

We can build a certifying Turing machine which solves PATH-TEST ...

Input (ROM): lorrioronmroNRN [0[1]0[010T110I0[0T0I0T0IOTLTS STOIOFA [T - - -
% m} input G
Certif. (ROM) [000 [0 LT0T0 FAT[LIT[OFATIOMIOFAOMIIOFAIIS ST [ [ [ [ - - -
potential path
R/W Tape 1: ilHHHIHHHHHHHHHggHHH

..and using only LOGSPACE as a function of the length of G.
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Summary of complexity classes

- NPSPACE__#

|
L C NL C C PSPACE C EXPTIME C NEXPTIME
W W Wy

PATH 3COL, 7
FVAL, 4COL, etc.
2COL SAT,

ISO,
HAMPATH

10° USD prize (Clay Mathematics Institute) for answering P yy3
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Suppose C, D are decision problems.
Suppose f : Cjpp — Dijnp is a function.

We say that
f reduces C to D,

and write

if for all x € Cipp,
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Picture of C < D

> |

Cinp

Dinp

Intuition: if C <f¢ D, then
@ Algorithms for D and f can be used to solve C.

@ Hence D is at least as hard as C (modulo the cost of computing f).
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Recall the problems 3COL and SAT:

3COL

INPUT: a finite graph G = (V, E).
QUESTION: is G 3-colorable?

SAT

INPUT: a boolean formula .
QUESTION: is o satisfiable?

Let's find a function f which reduces 3COL to SAT.
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A reduction of 3COL to SAT

Given a finite graph G = (V, E), we want a boolean formula ¢ such that

G is 3-colorable < g is satisfiable.

@ The variables of ¢ are x$ (v € V, c € {r,g,b}).
e Think of x¢ as representing the assertion “v is colored c.”

@ For each v € V let «, be the formula “v has exactly one color,” i.e.,
(xPV xBV xPY A= (x8 A XB) A (x5 A XE) A =(xP A XP).

@ Forv,w € V let B, be the formula “v and w have different colors,”
i.e.,
S(x"AXE) A (xEAXE) A (xPAXD).
o Let
QOG—(/\ av)/\ /\ ﬂv,w
veVv (v,w)eE

This clearly works.
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Picture of 3COL <; SAT

Define f : G — @g. Then 3COL <¢ SAT.

’ ¢ SAT

\.
F not-SAT

Graphs

Formulas

SAT is at least as hard as 3COL, modulo the cost of computing ¢¢.

What is the cost of computing g7

Ross Willard (Waterloo) Algebra and Complexity Trest', September 2008



Computing f with a functional Turing machine

Idea: replace the output bit with an output write-only tape.

hia

Input (ROM):  [QOTII0I0I0I0TIT0I00I0[0TII00I0ITI0I0I0I0I0T0I0TLLS STOIFA [ I - - -

R/W Tape 1: LTI T T I I T I I I I T I T I T T TSI TITIT -
R/W Tape 2: o BT T -

Output tape: i(IXIOIrIVIXIOIgIVIXIOIbI)1/\1(1X11lrlle111gllembl§5 bl)
¥6

At the end.
Exercise: Can compute ¢¢ from G in TIME(N?) and SPACE(log N).
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Picture of a functional Turing machine

In general:

a functional Turing machine is a Turing machine whose output bit is
replaced by an output tape (write-only).

@ Output tape grad student can only move RIGHT.

Let C, D be decision problems with appropriately encoded input sets
Cinps Dinp respectively.

I
A function f : Cinp — Dinp is computed by a functional Turing Machine M
if whenever M is started with input x € Cjyp, it eventually halts with f(x)
written on its output tape.

Ross Willard (Waterloo) Algebra and Complexity T¥edt', September 2008 18 / 26



X-computable functions

Let X be a complexity class (such as P, L, etc.).

I
We say that a function f : Ci5p, — Dijnp is computable in X if there exists a
Turing Machine which computes f and on input x requires no more
resources than those permitted by the definition of X.

Example: the function f : G — @ in our example showing 3COL <¢ SAT
is P-computable.

o (In fact, it is L-computable.)

Lemma. For any decent complexity class X, if C <g D € X and f is
X-computable, then C € X.
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Suppose X, Y are complexity classes with X C Y.
Let C, D be decision problems with C,D € Y.

© We say that C reduces to D (mod X) and write
C<xD

if there exists an X-computable function f : Cj,, — Djnp which
reduces C to D.

@ We write C =x D if both C <x D and D <x C.

This turns the =x-classes of Y into a poset.

Most widely used when X = P.
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The picture of NP (mod P)

The poset (NP/ =p, <p) has ...
Q a least element (consisting of all the elements of P), and

@ (S. Cook, ‘71; L. Levin, '73) a greatest element, namely, the =p-class
containing SAT .

< SAT

<—P

Jargon: SAT is NP-complete (for <p reductions).
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A decision problem D is NP-complete if:
e D e NP, and
o C<p D forall C e NP.

Equivalently (by Cook-Levin), D is NP-complete iff D =p SAT.

e NP-complete (includes SAT)

<—P
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Many problems in NP are known to be NP-complete.

Examples:
@ 3COL, 4COL, etc.
o HAMPATH

@ 3SAT (the restriction of SAT to formulas in CNF, each conjunct
being a disjunction of at most 3 literals)

(Exercise: check that our proof we gave for 3COL <p SAT is actually a
proof of 3COL <p 3SAT.)
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The picture of EXPTIME (mod P)

INPUT: a unary algebra A
and unary g: A— A

L-CLO 1 QuEsTION: is g € CloA?

NP-complete (SAT, 3SAT, 3COL, ...)

e (H. Friedman ‘82, unpubl.; C. Bergman, D. Juedes & G. Slutzki, '99)
CLO is EXPTIME-complete (for <p reductions).

e (D. Kozen, '77) 1-CLO is PSPACE-complete (for <p reductions).
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The picture of NP (mod L)

3SAT, 3COL

INPUT: a boolean circuit ¢
and values c for variables

VAL
¢ QUESTION: is ¢(c) = 17

PATH, 25AT

e SAT, 3SAT and 3COL are NP-complete (for <; reductions).
e (R. Ladner, '75) CVAL is P-complete (for <; reductions).
o (W. Savitch, '70) PATH is NL-complete (for <; reductions).
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L € NL C P C NP C PSPACE C EXPTIME ---

w w w w w w
FVAL, PATH, CVAL SAT, 1-CLO CLO
2COL  2SAT 3SAT,

3COL,

4COL, etc.

HAMPATH

Moreover, each problem listed above is “hardest in it's class,” i.e., is
complete with respect to either <p or <; reductions.
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