Universal Algebra and Computational Complexity Lecture 1

Ross Willard

University of Waterloo, Canada

Třešt', September 2008

$\ensuremath{\operatorname{Lecture}}\xspace$ 1: Decision problems and Complexity Classes

 $\ensuremath{\operatorname{Lecture}}\xspace$ 2: Nondeterminism, Reductions and Complete problems

LECTURE 3: Results and problems from Universal Algebra

Three themes: problems, algorithms, efficiency

A Decision Problem is ...

- A YES/NO question
- parametrized by one or more *inputs*.
 - Inputs must:
 - range over an *infinite* class.
 - be "finitistically described"

What we seek:

• An *algorithm* which correctly answers the question for every possible inputs.

What we ask:

- How *efficient* is this algorithm?
- Is there a better (more efficient) algorithm?

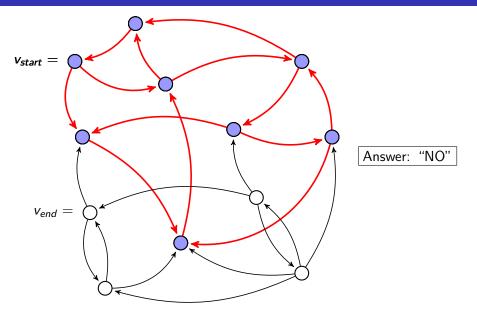
INPUT:

- A finite directed graph G = (V, E)
- Two distinguished vertices $v_{start}, v_{end} \in V$.

QUESTION:

- Does there exist in G a *directed path* from v_{start} to v_{end}?
 - (i.e., a sequence $v_{start} = v_0, v_1, v_2, \dots, v_k = v_{end}$ of vertices such that $(v_i, v_{i+1}) \in E$ for all $0 \le i < k$.)

An Algorithm for PATH



How long does this algorithm take?

- I.e., how many steps?
- ... as a function of the size of the input graph.

I'll give three answers to this.

Only action is changing a vertex's color.

Only changes possible are

- white \Rightarrow red
- red \Rightarrow blue
- blue \Rightarrow green.

So if n = |V|, then the algorithm requires at most 3n vertex-color changes.

Assume that $V = \{0, 1, ..., n - 1\}$ and E is encoded by the adjacency matrix $M_E = [e_{i,j}]$ where

$$e_{i,j} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{else.} \end{cases}$$

For i < n let c_i be a variable recording the color of vertex i.

Also let *Greenvar* be a variable storing whether there are green-colored vertices.

Second answer – pseudo-code

Algorithm:

- Input n, M_E, start and end.
- For i = 0 to n 1 set $c_i := white$.
- Set $c_{start} = green$.
- Set GreenVar := yes.
- While GreenVar = yes do:
 For i = 0 to n 1; for j = 0 to n 1
 if e_{i,j} = 1 and c_i = green and c_j = white then set c_j := red.
 For i = 0 to n 1
 If c_i = green then set c_i := blue
 Set GreenVar := no
 - For i = 0 to n 1
 - If c_i = red then (set c_i := green and set GreenVar := yes)
- If $c_{end} = blue$ then output YES; else output NO.

n loops n² cases

 $O(n^3)$ steps if n = |V|

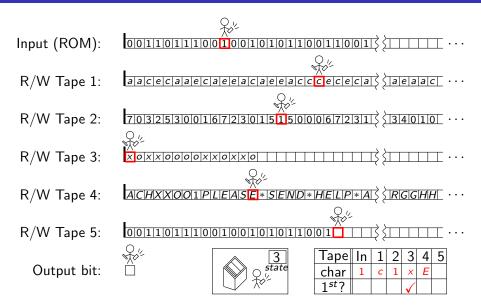
Again assume $V = \{0, 1, ..., n - 1\}.$

Assume also that $v_{start} = 0$ and $v_{end} = 1$.

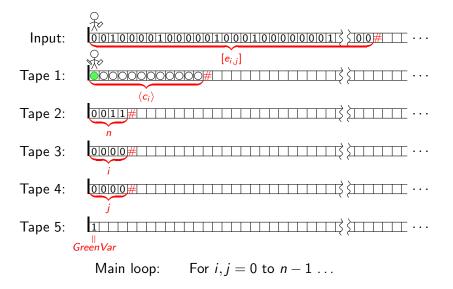
Assume the adjacency matrix is presented as a binary string of length n^2 .

Implement the algorithm on a *Turing machine*.

Turing machine



Implementing the algorithm for PATH



Point: overhead needed to keep track of i, j, c_i, c_j .

Thus:

• While
$$GreenVar = yes$$
 do:
• For $i = 0$ to $n - 1$; for $j = 0$ to $n - 1$
• if $e_{i,j} = 1$ and $c_i = green$ and $c_j = white$
then set $c_j := red$.
 $n \text{ loops}$
 $n^2 \text{ cases}$
 $O(n \log n) \text{ steps}$

SUMMARY: on an input graph G = (V, E) with |V| = n, our algorithm decides the answer to *PATH* using:

Heuristics	3 <i>n</i> color changes
Pseudo-code	$O(n^3)$ operations
Turing machine	$O(n^4 \log n)$ steps (Time)
	O(n) memory cells (Space)

Let $f : \mathbb{N} \to \mathbb{N}$ be given.

A decision problem D (with a specified encoding of its inputs) is:

- in TIME(f(N)) if there exists a Turing machine solving D in at most O(f(N)) steps on inputs of length N.
- in SPACE(f(N)) if there exists a Turing machine solving D requiring at most O(f(N)) memory cells (not including the input tape) on inputs of length N.

Complexity of PATH

Recall that our Turing machine solves PATH on graphs with n vertices in

- Time: $O(n^4 \log n)$ steps
- Space: O(n) memory cells.

Since "length N of input" = n^2 (when n = |V|), we have

 $\begin{array}{rcl} \mathsf{PATH} & \in & \mathsf{TIME}(\mathsf{N}^{2+\epsilon}) \\ \mathsf{PATH} & \in & \mathsf{SPACE}(\sqrt{\mathsf{N}}) \end{array}$

(Question: can we do better?...)

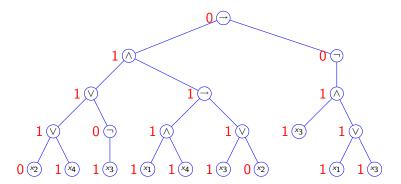
INPUT:

- A boolean formula φ in propositional variables x_1, \ldots, x_n .
- A sequence $\mathbf{c} = (c_1, ..., c_n) \in \{0, 1\}^n$.

QUESTION:

An algorithm for FVAL

 $\varphi = ((((x_2 \lor x_4) \lor (\neg(x_3))) \land ((x_1 \land x_4) \rightarrow (x_3 \lor x_2))) \rightarrow (\neg(x_3 \land (x_1 \lor x_3)))), \quad \mathbf{c} = (1,0,1,1).$



Seems to use TIME(N) and SPACE(N). But space can be re-used. In this example, 3 memory bits suffice. In general, a bottom-up computation, always computing a larger subtree first, can be organized to need only $O(\log |\varphi|)$ intermediate values.

A careful implementation on a Turing machine yields:

Theorem (Nancy Lynch, 1977).

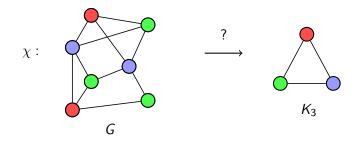
 $\begin{array}{rcl} \textit{FVAL} & \in & \textit{TIME}(\textit{N}^{2+\epsilon}) \\ \textit{FVAL} & \in & \textit{SPACE}(\log\textit{N}). \end{array}$

A third problem: Graph 3-Colorability (3COL)

INPUT: a finite graph G = (V, E).

QUESTION: Is it possible to color the vertices **red**, **green** or **blue**, so that no two adjacent vertices have the same color?

Equivalently: does there exist a homomorphism



An algorithm for 3COL

Brute force search algorithm:

• For each function $\chi: V \to K_3$: • Test if χ works. $3^{|V|} = 2^{O(\sqrt{N})}$ loops $O(N^2)$ time, $O(\sqrt{N})$ space

This at least proves:

$$3COL \in TIME(2^{O(\sqrt{N})})$$

 $3COL \in SPACE(\sqrt{N})$

Open problem: can 3COL be solved in polynomial time?

Ross Willard (Waterloo)

A fourth problem: Clone membership (CLO)

INPUT:

- A finite algebra $\mathbf{A} = \langle A; f_1, \dots, f_k \rangle$.
- An operation $g: A^n \to A$.

QUESTION: Is g a term operation of **A**?

All known algorithms essentially generate the full *n*-generated free algebra in $V(\mathbf{A})$,

$$\mathbf{F}_n \leq \mathbf{A}^{(A^n)}$$

and test whether $g \in F_n$.

In the worst case this could require as much as $|A^{(A^n)}| = 2^{O(|A|^n)}$ time and space.

Theorem: We cannot solve CLO in polynomial time.

•
$$P = PTIME = \bigcup_{k=1}^{\infty} TIME(N^k) = TIME(N^{O(1)}).$$

• $PSPACE = \bigcup_{k=1}^{\infty} SPACE(N^k) = SPACE(N^{O(1)}).$

Problems known to be in P are said to be *feasible* or *tractable*.

• EXPTIME =
$$\bigcup_{k=1}^{\infty} TIME(2^{N^k}) = TIME(2^{N^{O(1)}}).$$

• $L = LOGSPACE = SPACE(\log(N)).$

In tomorrow's lecture I will:

- Introduce "nondeterministic" versions of these 4 classes.
- Introduce problems which are "hardest" for each class.