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Three themes: problems, algorithms, efficiency

A Decision Problem is ...

e A YES/NO question

@ parametrized by one or more inputs.
e Inputs must:

@ range over an infinite class.
o be “finitistically described”

What we seek:

@ An algorithm which correctly answers the question for every possible
inputs.

What we ask:
@ How efficient is this algorithm?

@ Is there a better (more efficient) algorithm?
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Directed Graph Reachability problem (PATH)

INPUT:
o A finite directed graph G = (V, E)

@ Two distinguished vertices Vstart, Vend € V.

QUESTION:
@ Does there exist in G a directed path from vgsart O Vepg?
o (i.e., a sequence Vgparr = Vo, V1, Va, ..., Vk = Veng Of vertices such that

(V,', V,'+1) e Eforall0<i< k)
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An Algorithm for PATH

A

Vstart =

Answer: “NO” ‘

Vend =

Ross Willard (Waterloo) Algebra and Complexity Trest', September 2008 5/23



Efficiency of this algorithm

How long does this algorithm take?
o l.e., how many steps?

@ ...as a function of the size of the input graph.

I'll give three answers to this.
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First answer — Heuristics

Only action is changing a vertex's color.

Only changes possible are
o white = red
o red = blue

@ blue = green.

So if n =|V/|, then the algorithm requires at most 3n vertex-color
changes.

Ross Willard (Waterloo) Algebra and Complexity Trest', September 2008 7/23

/



Second answer — pseudo-code

Assume that V = {0,1,...,n— 1} and E is encoded by the adjacency
matrix Mg = [e; j] where

L _[1ifG)eE
1 0 else.

For i < n let ¢; be a variable recording the color of vertex i.

Also let Greenvar be a variable storing whether there are green-colored
vertices.
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Second answer — pseudo-code

Algorithm:

Input n, Mg, start and end.

For i =0 to n— 1 set ¢; := white.

o

o

o Set cstarr = green.

o Set GreenVar := yes.
o

While GreenVar = yes do: n loops
2
e Fori=0ton—1;forj=0ton—1 n= cases
o if ;j =1 and ¢; = green and ¢; = white then
set ¢; 1= red.
@ Fori=0ton—-1
o If ¢; = green then set ¢; := blue
e Set GreenVar := no
o Fori=0ton—1 O(n?) steps
o If ¢c; = red then (set ¢; := green and set if n= |V’

GreenVar := yes)

o If copg = blue then output YES; else output NO.
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Third answer — machine implementation

Again assume V ={0,1,...,n—1}.
Assume also that vear = 0 and Vepg = 1.
Assume the adjacency matrix is presented as a binary string of length n?.

Implement the algorithm on a Turing machine.
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Input (ROM):  [OIO[ITIIOTIIII0I0III0[0I[01[0[11I]00

R/W Tape 1: BAECERREEREEAERAEOEEEE OEEEASIECEFEREE

R/W Tape 2: [T REEoRIET BB 006 7I2EET {3400 - - -

R/W Tape 3:  xJoIxIx[olo[ololxx[olx[xo] T [T T [T [ [T [T ISST I T ---

R/W Tape 4: iAlCIHIXlXIOIOIlIPILIEIAISIEI*ISIEINIDI*IHIEILIPI*IAI§ [RIGIGHHL - - -

R/W Tape 5: iOlOlllllOlllllllOl LAPOALT T TSI TTTTT ---
- Tape[[In[ 1[2[ 3[ 4[5
Output bit: [ ‘%ftate char| 1] c|[1[x[E
1°t7 v
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Implementing the algorithm for PATH

hia

Input:  |0I0T110]0[0]0T1100I010I0[1101010III01010I0[0I0I01ATS STOTOFA T T - - -

[ei ]
Tape 1: iOI()K)IOI()IOI()IOIOIODI()j#I [TTTTTTTITTT] Ig\g\
| <Ci> Y
: 0[0[1]1
Tape 2 IOfOIIFA T T T T T T T T T T T T T T T T TTTTISSITTITIT]
n
| Y
Tape 3: IOIOI'OIOI#IHHHHIHHHHHHSSHHH
1
| Y
Tape 4: lOlOl'OIOJ#IHHHHIHHHHHHSSHHH
J
Tape b5: illHHHHHHllllllllllllléﬁ\llllll
GreeHnVar

Main loop: Fori,j=0ton—1...
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Pseudo-code revisited

Point: overhead needed to keep track of /,}, ¢, ¢;.

Thus:
@ While GreenVar = yes do: n loops
e Fori=0ton—1;forj=0ton—-1 n? cases
o if ;=1 and ¢; = green and ¢; = white O(n log n) steps

then set ¢; := red.

SUMMARY: on an input graph G = (V, E) with |V| = n, our algorithm
decides the answer to PATH using:

Heuristics 3n color changes
Pseudo-code O(n3) operations

Turing machine | O(n*log n) steps (Time)
O(n) memory cells (Space)
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Turing machine complexity

Let f : N — N be given.

A decision problem D (with a specified encoding of its inputs) is:

@ in TIME(f(N)) if there exists a Turing machine solving D in at most
O(f(N)) steps on inputs of length N.

@ in SPACE(f(N)) if there exists a Turing machine solving D requiring
at most O(f(N)) memory cells (not including the input tape) on
inputs of length N.
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Complexity of PATH

Recall that our Turing machine solves PATH on graphs with n vertices in
e Time: O(n*log n) steps

@ Space: O(n) memory cells.

Since “length N of input” = n? (when n = |V/|), we have

PATH € TIME(N*¢)
PATH e SPACE(VN)

(Question: can we do better?. . .)
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Another problem: Boolean Formula Value (FVAL)

INPUT:
@ A boolean formula ¢ in propositional variables xi, ..., x,.
e A sequence ¢ = (ci,...,¢y) € {0,1}".

QUESTION:
o Is ¢(c) =17
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An algorithm for FVAL

¢ = ((CaVvxa)V(=(a))N((arxa) = (x3Vx2))) = (=(sA(aVxs)))), € = (1,0,1,1).

Seems to use TIME(N) and SPACE(N).
But space can be re-used. In this example, 3 memory bits suffice.
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Complexity of FVAL

In general, a bottom-up computation, always computing a larger subtree
first, can be organized to need only O(log|y|) intermediate values.

A careful implementation on a Turing machine yields:

Theorem (Nancy Lynch, 1977).

FVAL € TIME(N?*€)
FVAL € SPACE(logN).
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A third problem: Graph 3-Colorability (3COL)

INPUT: a finite graph G = (V, E).

QUESTION: Is it possible to color the vertices red, green or blue, so that
no two adjacent vertices have the same color?

Equivalently: does there exist a homomorphism

K3
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An algorithm for 3COL

Brute force search algorithm:

@ For each function

x:V — Kz 31V = 200/ loops

O(N?) time,
O(V/'N) space

e Test if x works.

This at least proves:

3COL e TIME(2°(VN)y
3COL € SPACE(V'N)

Open problem: can 3COL be solved in polynomial time?
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A fourth problem: Clone membership (CLO)

INPUT:

o A finite algebra A = (A; f1,..., fk).

@ An operation g : A" — A.
QUESTION: Is g a term operation of A?
All known algorithms essentially generate the full n-generated free algebra
in V(A),

Fo < AU

and test whether g € F,.
IAl")

In the worst case this could require as much as |A(A")| = 20( time and

space.

Theorem: We cannot solve CLO in polynomial time.
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Some important complexity classes

Q@ P = PTIME = J;2, TIME(N*) = TIME(NO(). J

@ PSPACE = |J;2., SPACE(N*) = SPACE(N°WM)).

Problems known to be in P are said to be feasible or tractable.

@ EXPTIME = J°, TIME(2N) = TIME(2N°™).
O L = LOGSPACE = SPACE(log(N)).

L C P C PSPACE C EXPTIME
w

PATH
FVAL

w w
3COL CLO
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Tomorrow

L C P C PSPACE C EXPTIME
w

PATH
FVAL

w w
3COL CLO

In tomorrow’s lecture | will:
@ Introduce “nondeterministic” versions of these 4 classes.

@ Introduce problems which are “hardest” for each class.
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