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Recap from Yesterday’s Lecture

• Three forms of CSP: Variable-Value, Sat, and Hom

• Parameterisation: CSP(Γ), CSP(B)

• Feder-Vardi (Dichotomy) Conjecture

• Three approaches: graphs, logic, and algebra

• Pol(Γ) determines the complexity of CSP(Γ)
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Today

1. Constraints and Their Complexity: An introduction

2. Universal Algebra for CSP: A general theory

• From clones to algebras

• From algebras to varieties

• Hardness results

• Algebraic Dichotomy Conjecture

• Some tractability results

3. UA (and a bit of logic) for CSP: A bigger picture



Andrei Krokhin - Complexity of Constraint Satisfaction 4

Reducing the Domain

For a unary operation f and a relation R on D, let

f(R) = {(f(a1), . . . , f(an)) | (a1, . . . , an) ∈ R}.
For a constraint language Γ, let f(Γ) = {f(R) | R ∈ Γ}.
Theorem 1 (Jeavons, 1998) Let Γ be finite, and let

f ∈ Pol(Γ) be unary with minimal range. Then CSP(Γ)

and CSP(f(Γ)) are polynomial-time equivalent.

Proof. Take an instance P =
∧

Ri(si) of CSP(Γ) and

consider the instance P ′ = ∧
f(Ri)(si) of CSP(f(Γ)).

Since f(Ri) ⊆ Ri, we have Sol(P ′) ⊆ Sol(P) , and

conversely, for each ϕ ∈ Sol(P), f ◦ ϕ is a solution to P ′.
Mapping P ′ 7→ P is the reduction in the other direction.
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Adding the Constants

By previous slide, assume that unary operations in Pol(Γ)

form a permutation group G, i.e., Γ is a core.

Theorem 2 (Bulatov, Jeavons, K, 2005)

Let Γ′ = Γ∪ {{a} | a ∈ D}. Then CSP(Γ) and CSP(Γ′) are

polynomial-time equivalent.

Proof. Obviously, CSP(Γ) reduces to CSP(Γ′).

The other direction. Let D = {a1, . . . , an}. Then RG ∈ 〈Γ〉
where

RG = {(g(a1), . . . , g(an)) | g ∈ G}.
We may assume that RG ∈ Γ and =D∈ Γ.
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Proof cont’d

Take an instance P ′ of CSP(Γ′) over a set of variables V ′

and build an equivalent instance P of CSP(Γ) as follows.

• Include all constraints from P ′ to P
• Introduce new variables ya, a ∈ D

• Replace each constraint of the form x = a with x = ya

• Introduce new constraint RG(ya1 , . . . , yan)

Any solution of P ′ extends to a solution of P by yai
7→ ai.

If φ is a solution to P then we have

φ(ya1 , . . . , yan) = (g(a1), . . . , g(an)) for some g ∈ G.

Then g−1 ◦ φ (restricted to V ′) is a solution to P ′.
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Search Problem

Theorem 3 (Bulatov, Jeavons, K, 2005)

If the decision problem CSP(Γ) is tractable then the

corresponding search problem is tractable as well.

Proof. Take an instance P of CSP(Γ) and build an

equivalent instance P ′ of CSP(f(Γ)) s.t. Sol(P ′) ⊆ Sol(P).

Remember: CSP(f(Γ) ∪ {{a} | a ∈ f(D)}) is tractable.

For all variables x (in order)

for all values a ∈ f(D)

if P ′ ∧ (x = a) is satisfiable

set P ′ := P ′ ∧ (x = a) and go to next variable
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From CSP to Algebras

Definition 1 A finite algebra is a pair A = (D,F ) where

D is a finite set and F is a family of operations on D.

The clone 〈F 〉 is called the clone of term operations of A.

Two algebras A1 = (D,F1) and A2 = (D, F2) are said to be

term equivalent if they have the same clone of term op’s.

Definition 2 Let A = (D,F ) be a finite algebra.

Let CSP(A) = {CSP(Γ) | Γ ⊆ Inv(F ), |Γ| < ∞}.
We say that A is tractable if each problem in CSP(A) is

tractable, and A is NP-complete if some problem in

CSP(A) is NP-complete.

Note: Term equivalent algebras have the same complexity.
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A View on CSP(A)

Fact. Relations from Inv(F ) are universes of algebras from

SPfin(A) (the so-called subpowers of A).

Take an instance {(s1, R1), . . . , (sq, Rq)} of a problem in

CSP(A), over a set of variables V = {x1, . . . , xn}.
For a constraint (si, Ri), consider the following subalgebra

Ai of AV : {a ∈ DV | prsi
a ∈ Ri}.

Solutions to the instance = elements in
⋂q

i=1 Ai.

Hence, CSP(A) = Subalgebra Intersection problem:

“given” subalgebras A1, . . . ,Aq of Ak, k ≥ 1, is it true

that
⋂q

i=1 Ai 6= ∅?
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Varieties

Definition 3 For a class K of similar algebras, let

• H(K) be the class of all hom images of algebras from K
• S(K) be the class of all subalgebras of algebras from K
• P(K) and Pfin(K) be the classes of all and all finite,

respectively, direct products of algebras from K
A class of similar algebras that is closed under the

operators H, S and P is called a variety.

For an algebra A, the class HSP(A) is the variety

generated by A, and is denoted var(A).
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From Algebras to Varieties

Theorem 4 (Bulatov, Jeavons, 2003) If an algebra A

is tractable then every finite algebra in var(A) is tractable.

If var(A) contains a finite NP-complete algebra then A is

NP-complete.

Proof. We know (HSP(A))fin = HSPfin(A).

Let B = (B, FB) be a subalgebra or a homomorphic image

or a finite direct power of A = (D,FA).

Take a finite Γ ⊆ Inv(FB). We need to reduce CSP(Γ) to

CSP(Γ′) for some finite Γ′ ⊆ Inv(FA).

If B is a subalgebra of A then Inv(FB) ⊆ Inv(FA), so we

can take Γ′ = Γ.
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Proof: Homomorphic Images

Let ψ : A ³ B be a surjective homomorphism.

For a k-ary relation R on B, let

ψ−1(R) = {(a1, . . . , ak) ∈ Dk | (ψ(a1), . . . , ψ(ak)) ∈ R}

Fact. If R ∈ Inv(FB) then ψ−1(R) ∈ Inv(FA).

Take Γ′ = {ψ−1(R) | R ∈ Γ}.
The reduction from CSP(Γ) to CSP(Γ′) is straightforward:

an instance
∧

Ri(si) is transformed into
∧

ψ−1(Ri)(si).
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Proof: Finite Direct Powers

Let B = Ak.

Let R be an m-ary relation on Dk. Form an km-ary

relation R′ on D as follows: if

((a11, . . . , a1k), . . . , (am1, . . . , amk)) ∈ R then

(a11, . . . , a1k, . . . , am1, . . . , amk) ∈ R′.

Take Γ′ = {R′ | R ∈ Γ}. We have Γ′ ⊆ Inv(FA).

Take instance
∧

Ri(x1, . . . , xni
) of CSP(Γ). For every

variable xi in it, introduce new variables x1
i , . . . , x

k
i .

Transform the instance into an equivalent instance
∧

R′
i(x

1
1, . . . , x

k
1, . . . , x

1
ni

, . . . , xk
ni

).
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Varieties and Identities

Definition 4 An equational class is a class of all algebras

(in a given signature) satisfying a given set of identities.

Example 1 • Mal’tsev f(x, y, y) = f(y, y, x) = x

• Semilattice x · x = x, x · y = y · x, x · (y · z) = (x · y) · z
• Near-unanimity (NU)

f(y, x, . . . , x) = f(x, y, . . . , x) = . . . = f(x, x, . . . , y) = x

Theorem 5 (Birkhoff) Varieties = equational classes.

Thus, identities of A determine the complexity of CSP(A).
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Idempotent Algebras

We have shown that we only need to consider constraint

languages Γ which contain all constant relations {a}.
Then all polymorphisms of Γ are idempotent, that is,

they satisfy the identity f(x, . . . , x) = x.

Hence, we need to classify only idempotent algebras and

idempotent varieties.
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NP-complete Algebras: G-sets

For a permutation group G on D, a G-set is an algebra all

whose operations are of the form f(x1, . . . , xn) = g(xi) for

some g ∈ G and 1 ≤ i ≤ n.

If a G-set is idempotent then g = id and f is a projection.

Lemma 1 If A = (D, F ) is a non-trivial idempotent G-set

then A is NP-complete.

Proof. Assume 0, 1 ∈ D. Inv(F ) is the set of all relations

on D. Hence R = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} ∈ Inv(F ).

Recall that CSP({R}) is the Not-All-Equal Sat

problem, it’s NP-complete.
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NP-complete Algebras and Conjecture

Theorem 6 (Bulatov, Jeavons, K, 2005)

An idempotent algebra A is NP-complete if var(A)

contains a G-set.

Proposition 1 For an idempotent algebra A, var(A)

contains a G-set iff HS(A) contains a G-set.

All known NP-complete algebras satisfy this condition.

Conjecture 1 (BJK, 2005) (Structure of Dichotomy)

An idempotent algebra A is NP-complete if HS(A)

contains a G-set, and it is tractable otherwise.
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The Mother and The Highlights

Theorem 7 (Schaefer’78)

The dichotomy conjecture holds for D = {0, 1}.
Schaefer’s description perfectly aligns with Conjecture 1.

The theorem was one of main arguments for FV conjecture.

Definition 5 An algebra is called conservative if every

subset is a subalgebra.

Theorem 8 (Bulatov’02-06)

The Structure of Dichotomy conjecture holds

1. for all three-element algebras, and

2. for all conservative algebras.
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Taylor Operations

Theorem 9 (Taylor, 1977)

For any finite idempotent algebra A, TFAE

1. The variety var(A) does not contain a G-set.

2. The algebra A has an n-ary (Taylor) term operation f

satisfying n identities of the form

f(xi1, . . . , xin) = f(yi1, . . . , yin), i = 1, . . . , n

where all xij, yij ∈ {x, y} and xii 6= yii.

Ex: Mal’tsev, semilattice, NU operations are all Taylor.

NB. For idempotent algebras, no Taylor term ⇒ NPc and,

if the conjecture is true, then Taylor term ⇒ P.
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WNU Operations

An idempotent operation is called weak NU operation if

f(y, x, . . . , x) = f(x, y, . . . , x) = . . . = f(x, x, . . . , y).

Examples: x1 ∨ . . . ∨ xn, x1 + . . . + xn + xn+1(mod n).

NB. Any WNU operation is a Taylor operation.

Theorem 10 (Maróti, McKenzie, 2006)

For any finite idempotent algebra A with a Taylor term

has an WNU term operation f of some arity ≥ 2.

NB. For idempotent algebras, no WNU term ⇒ NPc, and,

if the conjecture is true, then WNU term ⇒ P.
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WNU: Application in Graph Theory

Recall that, for a digraph H, H-colouring = CSP(H).

Assume wlog that H is a core. If H is a directed cycle then

CSP(H) is tractable. Why?

Same if H is a disjoint union of directed cycles.

Conjecture 2 (Bang-Jensen,Hell, ’90)

If H is a core digraph without sources or sinks that is not

as above then CSP(H) is NP-complete.

Theorem 11 (Barto, Kozik, Niven’ 08) Let H be a

core digraph without sources or sinks. If H has a WNU

polymorphism then it is a disjoint union of directed cycles.

Corollary 1 Conjecture 2 holds.
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How To Prove Tractability

Currently, the two main (systematic) methods are:

• via bounded width (k-minimality or Datalog)

More on this in tomorrow’s lecture

• via small generating sets

More on this now
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An Algorithm to Solve CSP(A)

Take a CSP instance {(s1, R1), . . . , (sq, Rq)} of a problem

in CSP(A), over a set of variables V = {x1, . . . , xn}.
For a constraint (si, Ri), consider the following subalgebra

Ai of AV : {a ∈ DV | prsi
a ∈ Ri}.

Let A′
0 = An and A′

r =
⋂r

i=1 Ai = A′
r−1 ∩Ar for r > 0.

The solutions to the instance = the elements in A′
q.

Assume that we know a way to represent subpowers of A,

a way to recognise Rep(∅), and an algorithm A that takes

Rep(A′
r−1) and Cr = (si, Ri) and computes Rep(A′

r).

This algorithm solves any problem in CSP(A) !
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Small generating sets

For A to be polynomial, Rep must be “compact”.

One way to represent a subpower is by a generating set.

For each n, let gA(n) denote the smallest k such that each

subalgebra of An has a generating set of size ≤ k.

Assume gA(n) is bounded by a polynomial function.

Can A be made polynomial then?

Theorem 12 (Idziak,Marković,McKenzie,Valeriote,Willard)

Yes.

Details follow an algorithm that was first used by Dalmau

for Mal’tsev algebras and then for GMM, a common

generalisation of Mal’tsev and NU.
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Few Subpowers

An algebra A is said to have few subpowers if the function

sA(n) = log2 |{B : B ≤ An}| ≤ p(n) for some polynomial p.

Examples: NU algebras (Baker-Pixley’74), Mal’tsev alg’s.

Non-Examples: semilattices.

Theorem 13 (Berman+IMMVW’07)

For any algebra A, the functions sA(n) and gA(n) are

• either both bounded by a polynomial from above,

• or both bounded by an exponential function from below.

In particular, few subpowers ⇔ small generating sets.
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Few Subpowers: A Mal’tsev condition

Theorem 14 (Berman+IMMVW’07) A finite algebra

has few subpowers iff it has a k-edge term for some k > 1.

A k-edge operation is a (k + 1)-ary operation satisfying

t(x, x, y, y, y, . . . , y, y) = y

t(x, y, x, y, y, . . . , y, y) = y

t(y, y, y, x, y, . . . , y, y) = y

t(y, y, y, y, x, . . . , y, y) = y
...

t(y, y, y, y, y, . . . , y, x) = y

NB. 2-edge = Mal’tsev.


