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Recap from Yesterday’s Lecture

e Three forms of CSP: Variable-Value, Sat, and Hom
e Parameterisation: CSP(I"), CSP(B)
e Feder-Vardi (Dichotomy) Conjecture

e Three approaches: graphs, logic, and algebra

e Pol(T") determines the complexity of CSP(I")
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Today

1. Constraints and Their Complexity: An introduction

2. Universal Algebra for CSP: A general theory
e From clones to algebras
e From algebras to varieties
e Hardness results
e Algebraic Dichotomy Conjecture

e Some tractability results

3. UA (and a bit of logic) for CSP: A bigger picture
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Reducing the Domain

For a unary operation f and a relation R on D, let

f(R) = {(flar),. .., fan)) | (ar,...,an) € R}.
For a constraint language I', let f(I') = {f(R) | R € I'}.

Theorem 1 (Jeavons, 1998) Let I' be finite, and let
f € Pol(I") be unary with minimal range. Then CSP(T")
and CSP(f(I)) are polynomial-time equivalent.

Proof. Take an instance P = A R;(S;) of CSP(I") and
consider the instance P’ = A f(R;)(s;) of CSP(f(I")).

Since f(R;) C R;, we have Sol(P’) C Sol(P) , and
conversely, for each ¢ € Sol(P), f oy is a solution to P’.

Mapping P’ +— P is the reduction in the other direction.
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Adding the Constants

By previous slide, assume that unary operations in Pol(I")

form a permutation group G, i.e., I' is a core.

Theorem 2 (Bulatov, Jeavons, K, 2005)
Let " =T U{{a} | a € D}. Then CSP(I') and CSP(I") are

polynomial-time equivalent.

Proof. Obviously, CSP(I") reduces to CSP(I").
The other direction. Let D = {ay,...,a,}. Then Rg € (I')

where
RG — {(g(a’l)a SR 7g(a’n)) ‘ g < G}
We may assume that Rg € I' and =pe I.
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Proof cont’d

Take an instance P’ of CSP(I") over a set of variables V'
and build an equivalent instance P of CSP(I") as follows.

e Include all constraints from P’ to P

e Introduce new variables y,,a € D

e Replace each constraint of the form x = a with x = y,
e Introduce new constraint Rg(Ya,,-- -, Ya,)

Any solution of P’ extends to a solution of P by y,. — a;.

It ¢ is a solution to P then we have

Y-+ Yan) = (9(a1), ..., g(an)) for some g € G.
Then ¢! o ¢ (restricted to V) is a solution to P’.
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Search Problem

Theorem 3 (Bulatov, Jeavons, K, 2005)
If the decision problem CSP(I') is tractable then the

corresponding search problem is tractable as well.

Proof. Take an instance P of CSP(I") and build an
equivalent instance P’ of CSP(f(I")) s.t. Sol(P’) C Sol(P).

Remember: CSP(f(I') U{{a} | a € f(D)}) is tractable.

For all variables = (in order)

for all values a € f(D)
if P’ A (x = a) is satisfiable
set P/ := P’ A (x = a) and go to next variable
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From CSP to Algebras

Definition 1 A finite algebra is a pair A = (D, F) where
D is a finite set and F' is a family of operations on D.

The clone (F') is called the clone of term operations of A.
Two algebras Ay = (D, Fy) and Ay = (D, Fy) are said to be

term equivalent if they have the same clone of term op’s.

Definition 2 Let A = (D, F') be a finite algebra.

Let CSP(A) ={CSP(I") | ' C Inv(F), |T'| < oco}.

We say that A s tractable if each problem in CSP(A) is
tractable, and A 1s NP-complete if some problem in

CSP(A) is NP-complete.

Note: Term equivalent algebras have the same complexity:.



Andrei Krokhin - Complexity of Constraint Satisfaction

A View on CSP(A)

Fact. Relations from Inv(F') are universes of algebras from
SP i (A) (the so-called subpowers of A).

Take an instance {(51, R1), ..., (54, Ry)} of a problem in
CSP(A), over a set of variables V = {x,...,x,}.

For a constraint (5;, R;), consider the following subalgebra
A;of AY: {ae DV | pry a € R;}.

Solutions to the instance = elements in []/_, A;.

Hence, CSP(A) = SUBALGEBRA INTERSECTION problem:
“oiven” subalgebras Ay,..., A, of A¥ k> 1, is it true
that (_, A; # 07
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Varieties

Definition 3 For a class IC of similar algebras, let
e H(K) be the class of all hom images of algebras from K
o S(KC) be the class of all subalgebras of algebras from K
o P(K) and P4;,,(K) be the classes of all and all finite,

respectively, direct products of algebras from K

A class of similar algebras that is closed under the

operators H, S and P is called a variety.

For an algebra A, the class HSP(A) is the variety
generated by A, and is denoted var(A).
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From Algebras to Varieties

Theorem 4 (Bulatov, Jeavons, 2003) If an algebra A
is tractable then every finite algebra in var(A) is tractable.
If var(A) contains a finite NP-complete algebra then A is
NP-complete.

Proof. We know (HSP(A)) i = HSP £, (A).

Let B = (B, Fg) be a subalgebra or a homomorphic image
or a finite direct power of A = (D, Fy).

Take a finite [I' C Inv(Fg). We need to reduce CSP(I") to
CSP(I") for some finite IV C Inv(F}y).

If B is a subalgebra of A then Inv(Fg) C Inv(F}4), so we
can take I =T



Andrei Krokhin - Complexity of Constraint Satisfaction

Proof: Homomorphic Images

Let v : A — B be a surjective homomorphism.

For a k-ary relation R on B, let

vHR) = {(ar,...,ar) € D" | (Y(ar), ..., ¥(ar)) € R}
Fact. If R € Inv(Fp) then ¢y ' (R) € Inv(Fy).
Take IV = {¢ ' (R) | R € T'}.

The reduction from CSP(I") to CSP(I") is straightforward:

an instance A R;(5;) is transformed into A\ ¥~ (R;)(5;).

12
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Proof: Finite Direct Powers

Let B = AF.

Let R be an m-ary relation on D¥. Form an km-ary
relation R on D as follows: if

((a11y- -y a18), -y (Am1y - -+, Gmi)) € R then

(@11, vy Qlly oo oy Ay o vy i) € R

Take IV ={R' | R € I'}. We have [V C Inv(F}y).

Take instance A\ R;(x1,...,z,,) of CSP(I"). For every

k

variable x; in it, introduce new variables x,, ..., x;.

Transform the instance into an equivalent instance

(.1 k 1 k
/\Ri(xl,...,xl,...,xni,...,xm).
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Varieties and Identities
Definition 4 An equational class is a class of all algebras
(in a given signature) satisfying a given set of identities.
Example 1 o Mal'tsev f(x,y,y) = f(y,y,x) = x

o Semilatticex - x =z, x-y=y-x, - (y-2)=(x-y)-2

e Near-unanimity (NU)

fly.z,....x) = flz,y,...,a)=...= f(z,z,....y) ==
Theorem 5 (Birkhoff) Varieties = equational classes.

Thus, identities of A determine the complexity of CSP(A).
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Idempotent Algebras

We have shown that we only need to consider constraint

languages I' which contain all constant relations {a}.

Then all polymorphisms of I' are idempotent, that is,
they satisfy the identity f(z,...,x) = x.

Hence, we need to classify only idempotent algebras and

idempotent varieties.



Andrei Krokhin - Complexity of Constraint Satisfaction 16

NP-complete Algebras: (G-sets

For a permutation group G on D, a G-set is an algebra all
whose operations are of the form f(xy,...,z,) = g(x;) for
some g € G and 1 <1 <n.

It a G-set is idempotent then g = id and f is a projection.

Lemma 1 If A = (D, F) is a non-trivial idempotent G-set
then A 1s NP-complete.

Proof. Assume 0,1 € D. Inv(F) is the set of all relations
on D. Hence R ={0,1}*\ {(0,0,0),(1,1,1)} € Inv(F).
Recall that CSP({R}) is the NOT-ALL-EQUAL SAT
problem, it’s NP-complete.



Andrei Krokhin - Complexity of Constraint Satisfaction

NP-complete Algebras and Conjecture

Theorem 6 (Bulatov, Jeavons, K, 2005)
An idempotent algebra A is NP-complete if var(A)

contains a G -set.

Proposition 1 For an idempotent algebra A, var(A)
contains a G-set iff HS(A) contains a G-set.

All known NP-complete algebras satisty this condition.
Conjecture 1 (BJK, 2005) (Structure of Dichotomy)
An idempotent algebra A is NP-complete if HS(A)

contains a G-set, and it is tractable otherwise.

17
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The Mother and The Highlights

Theorem 7 (Schaefer’78)
The dichotomy conjecture holds for D = {0,1}.

Schaefer’s description perfectly aligns with Conjecture 1.

The theorem was one of main arguments for F'V conjecture.

Definition 5 An algebra is called conservative if every

subset is a subalgebra.

Theorem 8 (Bulatov’02-06)
The Structure of Dichotomy conjecture holds

1. for all three-element algebras, and

2. for all conservative algebras.

18
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Taylor Operations
Theorem 9 (Taylor, 1977)
For any finite idempotent algebra A, TFAE
1. The variety var(A) does not contain a G-set.
2. The algebra A has an n-ary (Taylor) term operation f
satisfying n tdentities of the form
f(xila"'axin) — f(yi17'°°7yin)7 L= 17"'7”
where all x5, y;; € {x,y} and xi; # yi.
Ex: Mal’tsev, semilattice, NU operations are all Taylor.

NB. For idempotent algebras, no Taylor term = NPc and,
if the conjecture is true, then Taylor term = P.

19
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WNU Operations

An idempotent operation is called weak NU operation if
fly,z,....x) = f(z,y,...,x)=...= f(z,z,...,y).
Examples: 1 V... Vx,, x1+...+ 2z, + z,.1(mod n).
NB. Any WNU operation is a Taylor operation.
Theorem 10 (Mardéti, McKenzie, 2006)

For any finite idempotent algebra A with a Taylor term
has an WNU term operation | of some arity > 2.

NB. For idempotent algebras, no WNU term = NPc, and,
if the conjecture is true, then WNU term = P.
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WNU: Application in Graph Theory

Recall that, for a digraph H, H-COLOURING = CSP(H).

Assume wlog that ‘H is a core. If H is a directed cycle then
CSP(H) is tractable. Why?
Same if H is a disjoint union of directed cycles.

Conjecture 2 (Bang-Jensen,Hell, '90)

If H is a core digraph without sources or sinks that is not
as above then CSP(H) is NP-complete.

Theorem 11 (Barto, Kozik, Niven’ 08) Let H be a
core digraph without sources or sinks. If H has a WNU

polymorphism then it is a disjoint union of directed cycles.

Corollary 1 Conjecture 2 holds.

21
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How To Prove Tractability

Currently, the two main (systematic) methods are:

e via bounded width (k-minimality or Datalog)

More on this in tomorrow’s lecture

e via small generating sets

More on this now
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An Algorithm to Solve CSP(A)

Take a CSP instance {(51, R1), ..., (54, R,)} of a problem
in CSP(A), over a set of variables V = {x,...,x,}.

For a constraint (5;, R;), consider the following subalgebra
A;of AY: {ae D" | pry a e R;}.

Let Aj=A"and Al =(_, A; =Al_NA, forr > 0.
The solutions to the instance = the elements in A;.

Assume that we know a way to represent subpowers of A,

a way to recognise Rep(()), and an algorithm 2l that takes
Rep(A!_,) and C, = (5;, R;) and computes Rep(A’).

This algorithm solves any problem in CSP(A) !
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Small generating sets

For 2 to be polynomial, Rep must be “compact”.
One way to represent a subpower is by a generating set.

For each n, let ga(n) denote the smallest k such that each
subalgebra of A™ has a generating set of size < k.

Assume ga(n) is bounded by a polynomial function.
Can 2 be made polynomial then?

Theorem 12 (Idziak,Markovié,McKenzie,Valeriote, Willard)
Yes.

Details follow an algorithm that was first used by Dalmau
for Mal’tsev algebras and then for GMM, a common
generalisation of Mal’tsev and NU.
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Few Subpowers

An algebra A is said to have few subpowers if the function

sa(n) =log, |{B: B < A"}| < p(n) for some polynomial p.

Examples: NU algebras (Baker-Pixley’74), Mal’tsev alg’s.

Non-Examples: semilattices.

Theorem 13 (Berman+IMMVW’07)

For any algebra A, the functions sa(n) and ga(n) are

e either both bounded by a polynomial from above,

e or both bounded by an exponential function from below.

In particular, few subpowers < small generating sets.

20
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Few Subpowers: A Mal’tsev condition

Theorem 14 (Berman+IMMVW’07) A finite algebra

has few subpowers iff it has a k-edge term for some k > 1.

A k-edge operation is a (k + 1)-ary operation satisfying

tr, 2, 9,9,9,...,4,y) = ¥
v, 2,9,9,...,9,Y) = Y
0y, v,9,2,Y,...,Y,Yy) = Y
Y, Y U U Ty o YY) = Y
Y Y, 0,99, -y, ) =y

NB. 2-edge = Mal'tsev.



